摘要:
A first object of the invention is a radiation detector comprising an energy absorber (203), for absorbing incident radiation (RAD) and thus undergoing a temperature increase; and optical readout means, for detecting said temperature increase; wherein said optical readout means comprises input coupling means (202) for coupling a light beam (2011) to said energy absorber (203) by exciting surface plasmons resonance, a surface plasmons resonance condition being dependent on the energy absorber (203) temperature, and wherein said energy absorber (203) is separated from said input coupling means (202) by a dielectric layer (2032).A second object of the invention is a micromechanical sensor comprising: a micromechanical oscillator and optical readout means (202) for detecting a displacement of said micromechanical oscillator; wherein said optical readout means comprise input coupling means (202) for coupling a light beam (2011) to a conductive surface (2031) by exciting surface plasmons resonance, a surface plasmons resonance condition being dependent on the displacement of said micromechanical oscillator.
摘要:
The present invention relates to a portable industrial instrument for performing, in an integrated and two-way manner, an interferometric fringe projection and shearography, on a object to be tested, so that, when the two-way interferometer (1) is associated with the coherent or quasi-coherent projection device (2), the instrument is able to measure the 3D shape of the object by interferometric fringe projection, also known as moiré method, and, when the two-way interferometer (1) is associated with the recording or imaging device (4), the instrument is able to perform shearographic measurements on the object, the direction of the traversing light beam in the interferometer (1) being reversed when shifting from one measurement configuration to the other one.
摘要:
The present invention relates to a portable industrial instrument for performing, in an integrated and two-way manner, an interferometric fringe projection and shearography, on a object to be tested, so that, when the two-way interferometer (1) is associated with the coherent or quasi-coherent projection device (2), the instrument is able to measure the 3D shape of the object by interferometric fringe projection, also known as moiré method, and, when the two-way interferometer (1) is associated with the recording or imaging device (4), the instrument is able to perform shearographic measurements on the object, the direction of the traversing light beam in the interferometer (1) being reversed when shifting from one measurement configuration to the other one.