Abstract:
A method for controlling well bore pressure based on model prediction control theory and systems theory, which belongs to the field of well bore pressure control technique, includes: detecting a well bottom pressure, a stand pipe pressure, a casing pressure, an injection flow rate and an outlet flow rate during construction process, and determining the presence of overflow or leakage; if there is no overflow or leakage, then fine-adjusting the wellhead casing pressure according to the slight fluctuations of the well bottom pressure, the stand pipe pressure or the casing pressure, ensuring that the well bottom pressure, the stand pipe pressure or the casing pressure are at a set value; if there is overflow or leakage, then using a well bore multi-phase flow dynamic model to simulate and calculate the overflow or leakage position and starting time of the overflow or leakage, predicting the variation over a future time period of the well bore pressure in the well drilling process, and utilizing an optimization algorithm to calculate the control parameter under a minimum of an actual well bottom pressure difference during the future period; and repeating the optimization process for the next time period after a first control parameter is selected and set. The present method enables the well bore pressure to be controlled within the allowable fluctuation range of a project, thus achieving precise pressure control.
Abstract:
A method for controlling well bore pressure based on model prediction control theory and systems theory, includes: detecting a well bottom pressure, a stand pipe pressure, a casing pressure, an injection flow rate and an outlet flow rate during the drilling operation process and determining the presence of overflow or leakage; if there is no overflow or leakage, then fine-adjusting the wellhead casing pressure according to the slight fluctuations of the well bottom pressure, the stand pipe pressure or the casing pressure; if there is overflow or leakage, simulating and calculating the overflow or leakage position and starting time of the overflow or leakage, predicting the variation over a future time period of the well bore pressure in the well drilling process, and utilizing an optimization algorithm to calculate the control parameter under a minimum of an actual well bottom pressure difference during the future period.
Abstract:
A wireless communication device, a wireless communication method and a wireless communication system. The wireless communication device includes: a classification unit, used for, based on the channel qualities of downlinks of a target cell and other cells in a cell cluster on a specific resource block, classifying the overall condition of the channel quality; and a control unit, used for controlling, so as to determine the target transmitting power of the target cell on the specific resource block by using a power distribution method adapting to the classification. According to the scheme, the system throughput of a wireless network on the specific resource block under dense cell distribution can be maximized.
Abstract:
A carrier coordination device and system, a communications device and method, and a measurement device and method. The carrier coordination device includes: a receiving unit, used to receive interference information for describing interference suffered by a user equipment; and a coordination unit, used to determine an interfering source base station of the user equipment according to the interference information, and coordinate carrier use of the user equipment and/or the interfering source base station at least based on the interference information and carrier state information of the interfering source base station, to reduce the interference suffered by the user equipment. The technology can be applied in a wireless communications field.