Abstract:
A method, system and computer program product for matching images is provided. The images to be matched are represented by feature points and feature vectors and orientations associated with the feature points. First, putative correspondences are determined by using feature vectors. A subset of putative correspondences is selected and the topological equivalence of the subset is determined. The topologically equivalent subset of putative correspondences is used to establish a motion estimation model. An orientation consistency test is performed on the putative correspondences and the corresponding motion estimation transformation that is determined, to avoid an infeasible transformation. A coverage test is performed on the matches that satisfy orientation consistency test. The candidate matches that do not cover a significant portion of one of the images are rejected. The final match images are provided in the order of decreasing matching, in case of multiple images satisfying all the test requirements.
Abstract:
The present invention relates to a method, system, and a computer program product for delivering content to a communication device, in response to an image sent by the communication device. The received image is matched with a plurality of images, and, when a match is found for the received image, content corresponding to the image is delivered to the communication device. The plurality of images is stored in an image database, and the corresponding content is stored in a content repository. The present invention enables a content provider to automatically update the image database and the content repository without any human intervention.
Abstract:
A method, system and computer program product for encoding an image is provided. The image that needs to be represented is represented in the form of a Gaussian pyramid which is a scale-space representation of the image and includes several pyramid images. The feature points in the pyramid images are identified and a specified number of feature points are selected. The orientations of the selected feature points are obtained by using a set of orientation calculating algorithms. A patch is extracted around the feature point in the pyramid images based on the orientations of the feature point and the sampling factor of the pyramid image. The boundary patches in the pyramid images are extracted by padding the pyramid images with extra pixels. The feature vectors of the extracted patches are defined. These feature vectors are normalized so that the components in the feature vectors are less than a threshold.
Abstract:
A method, system and computer program product for matching images is provided. The images to be matched are represented by feature points and feature vectors and orientations associated with the feature points. First, putative correspondences are determined by using feature vectors. A subset of putative correspondences is selected and the topological equivalence of the subset is determined. The topologically equivalent subset of putative correspondences is used to establish a motion estimation model. An orientation consistency test is performed on the putative correspondences and the corresponding motion estimation transformation that is determined, to avoid an infeasible transformation. A coverage test is performed on the matches that satisfy orientation consistency test. The candidate matches that do not cover a significant portion of one of the images are rejected. The final match images are provided in the order of decreasing matching, in case of multiple images satisfying all the test requirements.