Abstract:
A method and an apparatus that determine a total number of threads to concurrently execute executable codes compiled from a single source for target processing units in response to an API (Application Programming Interface) request from an application running in a host processing unit are described. The target processing units include GPUs (Graphics Processing Unit) and CPUs (Central Processing Unit). Thread group sizes for the target processing units are determined to partition the total number of threads according to a multi-dimensional global thread number included in the API request. The executable codes are loaded to be executed in thread groups with the determined thread group sizes concurrently in the target processing units.
Abstract:
A method and an apparatus for a parallel computing program calling APIs (application programming interfaces) in a host processor to perform a data processing task in parallel among compute units are described. The compute units are coupled to the host processor including central processing units (CPUs) and graphic processing units (GPUs). A program object corresponding to a source code for the data processing task is generated in a memory coupled to the host processor according to the API calls. Executable codes for the compute units are generated from the program object according to the API calls to be loaded for concurrent execution among the compute units to perform the data processing task.