Abstract:
A method and arrangement are provided for reducing the amount of condensed moisture inside an enclosure which encloses at least one piece of electrical equipment which is configured to receive electric power from outside the enclosure in a first electrical magnitude range (0 . . . maxinput) and to feed electric power to outside the enclosure in a second electrical magnitude range (minoutput . . . maxoutput). Electric power received on at least one portion (a, b, c) of the first electrical magnitude range (0 . . . maxinput) being outside the second electrical magnitude range (minoutput . . . maxoutput) is utilized for heating the condensed moisture for exhaustion thereof.
Abstract:
An arrangement and a method are provided in connection with a solar energy system. The arrangement includes solar panels and a converter for converting the DC voltage from the solar panels. The converter is arranged inside a container or a similar closed structure. The arrangement includes means for producing heat from the energy produced by the solar panels. The means are arranged inside the container or a similar closed structure and are electrically connectable to the solar panels.
Abstract:
A method and arrangement are provided for reducing the amount of condensed moisture inside an enclosure which encloses at least one piece of electrical equipment which is configured to receive electric power from outside the enclosure in a first electrical magnitude range (0 . . . maxinput) and to feed electric power to outside the enclosure in a second electrical magnitude range (minoutput . . . maxoutput). Electric power received on at least one portion (a, b, c) of the first electrical magnitude range (0 . . . maxinput) being outside the second electrical magnitude range (minoutput . . . maxoutput) is utilized for heating the condensed moisture for exhaustion thereof.