-
公开(公告)号:US20230019201A1
公开(公告)日:2023-01-19
申请号:US17956076
申请日:2022-09-29
Applicant: ABB Schweiz AG
Inventor: Benedikt Schmidt , Ido Amihai , Arzam Muzaffar Kotriwala , Moncef Chioua , Dennis Janka , Felix Lenders , Jan Christoph Schlake , Martin Hollender , Hadil Abukwaik , Benjamin Kloepper
IPC: G05B13/02
Abstract: An industrial plant machine learning system includes a machine learning model, providing machine learning data, an industrial plant providing plant data and an abstraction layer, connecting the machine learning model and the industrial plant, wherein the abstraction layer is configured to provide standardized communication between the machine learning model and the industrial plant, using a machine learning markup language.
-
2.
公开(公告)号:US20240302832A1
公开(公告)日:2024-09-12
申请号:US18668370
申请日:2024-05-20
Applicant: ABB Schweiz AG
Inventor: Hadil Abukwaik , Divyasheel Sharma , Benjamin Kloepper , Arzam Muzaffar Kotriwala , Pablo Rodriguez , Benedikt Schmidt , Ruomu Tan , Chandrika K R , Reuben Borrison , Marcel Dix , Jens Doppelhamer
IPC: G05B23/02
CPC classification number: G05B23/0254 , G05B23/027 , G05B23/0286
Abstract: A method for training a prediction model includes obtaining training samples representing states of the process that do not cause the undesired event; obtaining based on a process model and a set of predetermined rules that stipulate states having an increased likelihood of the undesired event occurring; training samples representing states with an increased likelihood to cause the undesired event; providing samples to the to-be-trained prediction model to obtain a prediction of the likelihood for occurrence of the undesired event in a state of the process represented by the respective sample; rating a difference between the prediction and the label of the respective sample using a predetermined loss function; and optimizing parameters such that, when predictions are made, the rating by the loss function improves.
-
公开(公告)号:US20230384752A1
公开(公告)日:2023-11-30
申请号:US18448523
申请日:2023-08-11
Applicant: ABB Schweiz AG
Inventor: Pablo Rodriguez , Jens Doppelhamer , Benjamin Kloepper , Reuben Borrison , Marcel Dix , Benedikt Schmidt , Hadil Abukwaik , Arzam Muzaffar Kotriwala , Sylvia Maczey , Dawid Ziobro , Simon Hallstadius Linge , Marco Gaertler , Divyasheel Sharma , Chandrika K R , Gayathri Gopalakrishnan , Matthias Berning , Roland Braun
IPC: G05B19/05
CPC classification number: G05B19/056 , G05B2219/1204
Abstract: A method includes acquiring state variables that characterize an operational state of an industrial plant; acquiring interaction events of a plant operator interacting with the distributed control system via a human-machine interface; determining based on the interaction events, and with state variables as input data, whether one or more interaction events are indicative of the plant operator executing a task that is not sufficiently covered by engineering of the distributed control system. When this determination is positive, mapping the input data to an amendment and/or augmentation for the engineering tool that has generated the application code.
-
公开(公告)号:US20230094914A1
公开(公告)日:2023-03-30
申请号:US17956097
申请日:2022-09-29
Applicant: ABB Schweiz AG
Inventor: Benedikt Schmidt , Ido Amihai , Arzam Muzaffar Kotriwala , Moncef Chioua , Felix Lenders , Dennis Janka , Martin Hollender , Jan Christoph Schlake , Hadil Abukwaik , Benjamin Kloepper
IPC: G06N20/00
Abstract: A computer-implemented method of generating a training data set for training an artificial intelligence module includes providing first and second data sets, the first data set including first data elements indicative of a first operational condition, the second data set including second data elements indicative of a second operational condition that matches the first operational condition. The method further comprises determining a data transformation for transforming the first data elements into the second data elements; applying the data transformation to the first data elements and/or to further data elements of further data sets, thereby generating a transformed data set; and generating a training data set for training the AI module based on at least a part of the transformed data set.
-
公开(公告)号:US20220342382A1
公开(公告)日:2022-10-27
申请号:US17725490
申请日:2022-04-20
Applicant: ABB Schweiz AG
Inventor: Hadil Abukwaik , Jens Doppelhamer , Marcel Dix , Benjamin Kloepper , Pablo Rodriguez
IPC: G05B19/4065
Abstract: A system and method provides an impact list of affecting equipment elements that affect an industrial sub-process. The method comprises the steps of selecting, in a topology model, the sub-process, wherein the sub-process is an equipment element that is a part of an industrial plant or process, and wherein the topology model is a graph, whose nodes represent equipment elements and whose edges represent interconnections between the equipment elements; traversing the nodes of the topology model, wherein the traversing starts from the selected sub-process and uses a traversing strategy; and for each of the at least one equipment elements, if the equipment element affects the industrial sub-process by an affecting degree greater than a first predefined affecting degree, adding the equipment element to the impact list of affecting equipment elements.
-
公开(公告)号:US20250004464A1
公开(公告)日:2025-01-02
申请号:US18756100
申请日:2024-06-27
Applicant: ABB Schweiz AG
Inventor: Santonu Sarkar , Hadil Abukwaik , Reuben Borrison , Divyasheel Sharma , Marcel Dix , Chandrika K R , Deepti Maduskar , Marie Christin Platenius-Mohr , Benjamin Kloepper
IPC: G05B23/02 , G05B19/409
Abstract: There is provided an explainer system for explaining an alarm raised by a machine learned model of an industrial automation system. The explainer system is configured to: receive model output from the machine learned model trained to predict anomalous behaviour in the industrial automation system and to raise the alarm; process the model output using at least one prediction explanation technique to identify at least one influential feature which contributed to the model output; use the identified at least one influential feature to extract contextual information from at least one machine-readable information source pertaining to the industrial automation system; and prepare the extracted contextual information for display to an operator of the industrial automation system, to enable the operator to select an appropriate action to take in response to the alarm for ensuring proper functioning of the industrial automation system.
-
公开(公告)号:US20240019849A1
公开(公告)日:2024-01-18
申请号:US18475681
申请日:2023-09-27
Applicant: ABB Schweiz AG
Inventor: Dawid Ziobro , Arzam Muzaffar Kotriwala , Marco Gaertler , Jens Doppelhamer , Pablo Rodriguez , Matthias Berning , Benjamin Kloepper , Reuben Borrison , Marcel Dix , Benedikt Schmidt , Hadil Abukwaik , Sylvia Maczey , Simon Hallstadius Linge , Divyasheel Sharma , Chandrika K R , Gayathri Gopalakrishnan
IPC: G05B19/418
CPC classification number: G05B19/4184 , G05B2219/34465
Abstract: An assistance system comprises a plant topology repository comprising a representation of the components of the plant and relations between the components; a monitoring subsystem configured for monitoring signals from the components and for monitoring a related event, as a key for the monitored signals; an aggregation subsystem configured for storing a plurality of the monitored signals and the related events, wherein at least one of the events is the abnormal situation; an identification subsystem configured for comparing currently monitored signals to stored monitored signals and the related event; and an evaluation subsystem configured for outputting a predefined action, if the currently monitored signals match to the event that is the abnormal situation.
-
公开(公告)号:US20230016668A1
公开(公告)日:2023-01-19
申请号:US17954485
申请日:2022-09-28
Applicant: ABB Schweiz AG
Inventor: Benedikt Schmidt , Ido Amihai , Moncef Chioua , Arzam Kotriwala , Martin Hollender , Dennis Janka , Felix Lenders , Jan Christoph Schlake , Benjamin Kloepper , Hadil Abukwaik
Abstract: A method includes training a first control model by utilizing a first set of input data as first input, resulting in a trained first control model; copying the trained first control model to a second control model, wherein, after copying, the second input layer and the plurality of second hidden layers is identical to the plurality of first hidden layers, and the first output layer is replaced by the second output layer; freezing the plurality of second hidden layers; training the second control model by utilizing the first set of input data as second input, resulting in a trained second control model; and running the trained second control model by utilizing a second set of input data as second input, wherein the second output outputs the quality measure of the first control model.
-
公开(公告)号:US20220343193A1
公开(公告)日:2022-10-27
申请号:US17724693
申请日:2022-04-20
Applicant: ABB Schweiz AG
Inventor: Divyasheel Sharma , Benjamin Kloepper , Marco Gaertler , Dawid Ziobro , Simon Linge , Pablo Rodriguez , Matthias Berning , Reuben Borrison , Marcel Dix , Benedikt Schmidt , Hadil Abukwaik , Arzam Muzaffar Kotriwala , Sylvia Maczey , Jens Doppelhamer , Chandrika K R , Gayathri Gopalakrishnan
IPC: G06N5/04
Abstract: A decision support system and method for an industrial plant is configured and operates to: obtain a causal graph modeling causal assumptions relating to conditional dependence between variables in the industrial plant; obtain observational data relating to operation of the industrial plant; and perform causal inference using the causal graph and the observational data to estimate at least one causal effect relevant for making decisions when operating the industrial plant.
-
公开(公告)号:US20240302831A1
公开(公告)日:2024-09-12
申请号:US18669696
申请日:2024-05-21
Applicant: ABB Schweiz AG
Inventor: Hadil Abukwaik , Divyasheel Sharma , Benjamin Kloepper , Arzam Muzaffar Kotriwala , Pablo Rodriguez , Benedikt Schmidt , Ruomu Tan , Chandrika K R , Reuben Borrison , Marcel Dix , Jens Doppelhamer
IPC: G05B23/02
CPC classification number: G05B23/024 , G05B23/0251
Abstract: A method for determining the state of health of an industrial process executed by at least one industrial plant comprising an arrangement of entities, and the state of each such entity, includes obtaining values of the entity state variables; providing the values to a model to obtain a prediction of the state of health; determining propagation paths for anomalies between said entities; determining importances of the states of health of the individual entities for the overall state of health of the process; and aggregating the individual states of health of the entities to obtain the overall state of health of the process.
-
-
-
-
-
-
-
-
-