Abstract:
A system may be configured as an image recognition machine that utilizes an image feature representation called local feature embedding (LFE). LFE enables generation of a feature vector that captures salient visual properties of an image to address both the fine-grained aspects and the coarse-grained aspects of recognizing a visual pattern depicted in the image. Configured to utilize image feature vectors with LFE, the system may implement a nearest class mean (NCM) classifier, as well as a scalable recognition algorithm with metric learning and max margin template selection. Accordingly, the system may be updated to accommodate new classes with very little added computational cost. This may have the effect of enabling the system to readily handle open-ended image classification problems.
Abstract:
A convolutional neural network (CNN) is trained for font recognition and font similarity learning. In a training phase, text images with font labels are synthesized by introducing variances to minimize the gap between the training images and real-world text images. Training images are generated and input into the CNN. The output is fed into an N-way softmax function dependent on the number of fonts the CNN is being trained on, producing a distribution of classified text images over N class labels. In a testing phase, each test image is normalized in height and squeezed in aspect ratio resulting in a plurality of test patches. The CNN averages the probabilities of each test patch belonging to a set of fonts to obtain a classification. Feature representations may be extracted and utilized to define font similarity between fonts, which may be utilized in font suggestion, font browsing, or font recognition applications.
Abstract:
A system may be configured as an image recognition machine that utilizes an image feature representation called local feature embedding (LFE). LFE enables generation of a feature vector that captures salient visual properties of an image to address both the fine-grained aspects and the coarse-grained aspects of recognizing a visual pattern depicted in the image. Configured to utilize image feature vectors with LFE, the system may implement a nearest class mean (NCM) classifier, as well as a scalable recognition algorithm with metric learning and max margin template selection. Accordingly, the system may be updated to accommodate new classes with very little added computational cost. This may have the effect of enabling the system to readily handle open-ended image classification problems.
Abstract:
Example systems and methods for classifying visual patterns into a plurality of classes are presented. Using reference visual patterns of known classification, at least one image or visual pattern classifier is generated, which is then employed to classify a plurality of candidate visual patterns of unknown classification. The classification scheme employed may be hierarchical or nonhierarchical. The types of visual patterns may be fonts, human faces, or any other type of visual patterns or images subject to classification.
Abstract:
Example systems and methods for classifying visual patterns into a plurality of classes are presented. Using reference visual patterns of known classification, at least one image or visual pattern classifier is generated, which is then employed to classify a plurality of candidate visual patterns of unknown classification. The classification scheme employed may be hierarchical or nonhierarchical. The types of visual patterns may be fonts, human faces, or any other type of visual patterns or images subject to classification.