Abstract:
In various example embodiments, a system and method for providing a visual example-based user interface for adjusting images is provided. In example embodiments, a new image to be adjusted is received. A plurality of basis styles is generated by applying adjustment parameters to the new image. Each of the plurality of basis styles comprises an adjusted version of the new image with an adjustment of at least one image control. A user interface is provided that positions a version of the new image in a center portion and positions the plurality of basis styles on the user interface based on the adjustment parameters applied to the new image. A control mechanism is provided over the version of the new image whereby movement of the control mechanism to a new position on the user interface causes the version of the new image to adjust accordingly.
Abstract:
A computer implemented method for generating a representative thumbnail for an image. The method comprises determining a representative area of an image, the determining comprising determining an absence of faces in the image; dividing the image into one or more zones; and selecting a zone with maximum edge strength as the representative area; and generating a thumbnail by cropping the image to the representative area.
Abstract:
In example embodiments, systems and methods for learning and using user preferences for image adjustments are presented. In example embodiments, a new image is received. A correction parameter based on previously stored user adjustments for similar images is determined. A user style that is an adjusted version of the new image is generated by applying the correction parameter. The user style is provided on a user interface. A user adjustment is received. Based on determining that a user sample image is within a predetermined threshold of closeness to the new image, data corresponding to the user sample image is replaced with new adjustment data for the new image in a database of user sample images used to generate the correction parameter. Based on determining that no user sample images are within the predetermined threshold of closeness, new adjustment data is appended to the database used to generate the correction parameter.
Abstract:
In example embodiments, systems and methods for learning and using user preferences for image adjustments are presented. In example embodiments, a new image is received. A correction parameter based on previously stored user adjustments for similar images is determined. A user style that is an adjusted version of the new image is generated by applying the correction parameter. The user style is provided on a user interface. A user adjustment is received. Based on determining that a user sample image is within a predetermined threshold of closeness to the new image, data corresponding to the user sample image is replaced with new adjustment data for the new image in a database of user sample images used to generate the correction parameter. Based on determining that no user sample images are within the predetermined threshold of closeness, new adjustment data is appended to the database used to generate the correction parameter.
Abstract:
In various example embodiments, a system and method for using machine learning to define user controls for image adjustment is provided. In example embodiments, a new image to be adjusted is received. A weight is applied to reference images of a reference dataset based on a comparison of content of the new image to the reference image of the reference dataset. A plurality of basis styles is generated by applying weighted averages of adjustment parameters corresponding to the weighted reference images to the new image. Each of the plurality of basis styles comprises a version of the new image with an adjustment of at least one image control based on the weighted averages of the adjustment parameters of the reference dataset. The plurality of basis styles is provided to a user interface of a display device.
Abstract:
In various example embodiments, a system and method for using machine learning to define user controls for image adjustment is provided. In example embodiments, a new image to be adjusted is received. A weight is applied to reference images of a reference dataset based on a comparison of content of the new image to the reference image of the reference dataset. A plurality of basis styles is generated by applying weighted averages of adjustment parameters corresponding to the weighted reference images to the new image. Each of the plurality of basis styles comprises a version of the new image with an adjustment of at least one image control based on the weighted averages of the adjustment parameters of the reference dataset. The plurality of basis styles is provided to a user interface of a display device.
Abstract:
In example embodiments, systems and methods for learning and using user preferences for image adjustments are presented. In example embodiments, a new image is received. A correction parameter based on previously stored user adjustments for similar images is determined. A user style that is an adjusted version of the new image is generated by applying the correction parameter. The user style is provided on a user interface. A user adjustment is received. Based on determining that a user sample image is within a predetermined threshold of closeness to the new image, data corresponding to the user sample image is replaced with new adjustment data for the new image in a database of user sample images used to generate the correction parameter. Based on determining that no user sample images are within the predetermined threshold of closeness, new adjustment data is appended to the database used to generate the correction parameter.
Abstract:
In example embodiments, systems and methods for learning and using user preferences for image adjustments are presented. In example embodiments, a new image is received. A correction parameter based on previously stored user adjustments for similar images is determined. A user style that is an adjusted version of the new image is generated by applying the correction parameter. The user style is provided on a user interface. A user adjustment is received. Based on determining that a user sample image is within a predetermined threshold of closeness to the new image, data corresponding to the user sample image is replaced with new adjustment data for the new image in a database of user sample images used to generate the correction parameter. Based on determining that no user sample images are within the predetermined threshold of closeness, new adjustment data is appended to the database used to generate the correction parameter.
Abstract:
In various example embodiments, a system and method for using machine learning to define user controls for image adjustment is provided. In example embodiments, a new image to be adjusted is received. A weight is applied to reference images of a reference dataset based on a comparison of content of the new image to the reference image of the reference dataset. A plurality of basis styles is generated by applying weighted averages of adjustment parameters corresponding to the weighted reference images to the new image. Each of the plurality of basis styles comprises a version of the new image with an adjustment of at least one image control based on the weighted averages of the adjustment parameters of the reference dataset. The plurality of basis styles is provided to a user interface of a display device.
Abstract:
A computer implemented method for generating a representative thumbnail for an image. The method comprises determining a representative area of an image, the determining comprising determining an absence of faces in the image; dividing the image into one or more zones; and selecting a zone with maximum edge strength as the representative area; and generating a thumbnail by cropping the image to the representative area.