Abstract:
Embodiments of the present invention provide systems, methods, and computer storage media directed to a graphics editor that enables a localized preview of the effect of a selected digital brush. Such a graphics editor can be configured to determine a region of an image that is rendered on a display of the computing device that the user wishes to view a localized preview of. This region can, for example, be determined based on input received from a user of the computing device selecting the region. The graphics editor can then be configured to cause a localized preview to be rendered on a display of the computing device, where the localized preview reflects application of the selected digital brush to the determined region. Other embodiments may be described and/or claimed.
Abstract:
A computer implemented method for generating a representative thumbnail for an image. The method comprises determining a representative area of an image, the determining comprising determining an absence of faces in the image; dividing the image into one or more zones; and selecting a zone with maximum edge strength as the representative area; and generating a thumbnail by cropping the image to the representative area.
Abstract:
In various example embodiments, a system and method for using machine learning to define user controls for image adjustment is provided. In example embodiments, a new image to be adjusted is received. A weight is applied to reference images of a reference dataset based on a comparison of content of the new image to the reference image of the reference dataset. A plurality of basis styles is generated by applying weighted averages of adjustment parameters corresponding to the weighted reference images to the new image. Each of the plurality of basis styles comprises a version of the new image with an adjustment of at least one image control based on the weighted averages of the adjustment parameters of the reference dataset. The plurality of basis styles is provided to a user interface of a display device.
Abstract:
In various example embodiments, a system and method for using machine learning to define user controls for image adjustment is provided. In example embodiments, a new image to be adjusted is received. A weight is applied to reference images of a reference dataset based on a comparison of content of the new image to the reference image of the reference dataset. A plurality of basis styles is generated by applying weighted averages of adjustment parameters corresponding to the weighted reference images to the new image. Each of the plurality of basis styles comprises a version of the new image with an adjustment of at least one image control based on the weighted averages of the adjustment parameters of the reference dataset. The plurality of basis styles is provided to a user interface of a display device.
Abstract:
In various example embodiments, a system and method for using machine learning to define user controls for image adjustment is provided. In example embodiments, a new image to be adjusted is received. A weight is applied to reference images of a reference dataset based on a comparison of content of the new image to the reference image of the reference dataset. A plurality of basis styles is generated by applying weighted averages of adjustment parameters corresponding to the weighted reference images to the new image. Each of the plurality of basis styles comprises a version of the new image with an adjustment of at least one image control based on the weighted averages of the adjustment parameters of the reference dataset. The plurality of basis styles is provided to a user interface of a display device.
Abstract:
A computer implemented method for generating a representative thumbnail for an image. The method comprises determining a representative area of an image, the determining comprising determining an absence of faces in the image; dividing the image into one or more zones; and selecting a zone with maximum edge strength as the representative area; and generating a thumbnail by cropping the image to the representative area.