Abstract:
A convolutional neural network (CNN) is trained for font recognition and font similarity learning. In a training phase, text images with font labels are synthesized by introducing variances to minimize the gap between the training images and real-world text images. Training images are generated and input into the CNN. The output is fed into an N-way softmax function dependent on the number of fonts the CNN is being trained on, producing a distribution of classified text images over N class labels. In a testing phase, each test image is normalized in height and squeezed in aspect ratio resulting in a plurality of test patches. The CNN averages the probabilities of each test patch belonging to a set of fonts to obtain a classification. Feature representations may be extracted and utilized to define font similarity between fonts, which may be utilized in font suggestion, font browsing, or font recognition applications.
Abstract:
Example systems and methods for classifying visual patterns into a plurality of classes are presented. Using reference visual patterns of known classification, at least one image or visual pattern classifier is generated, which is then employed to classify a plurality of candidate visual patterns of unknown classification. The classification scheme employed may be hierarchical or nonhierarchical. The types of visual patterns may be fonts, human faces, or any other type of visual patterns or images subject to classification.
Abstract:
Techniques are disclosed for removing blur from a single image by accumulating a blur kernel estimation across several scale levels of the image and balancing the contributions of the different scales to the estimation depending on the noise level in each observation. In particular, a set of observations can be obtained by applying a set of variable scale filters to a single blurry image at different scale levels. A single blur kernel can be estimated across all scales from the set of observations and used to obtain a single latent sharp image. The estimation at a large scale level is refined using the observations at successively smaller scale levels. The filtered observations may be weighted during the estimation to balance the contributions of each scale to the estimation of the blur kernel. A deblurred digital image is recovered by deconvolving the blurry digital image using the estimated blur kernel.
Abstract:
A first set of attributes (e.g., style) is generated through pre-trained single column neural networks and leveraged to regularize the training process of a regularized double-column convolutional neural network (RDCNN). Parameters of the first column (e.g., style) of the RDCNN are fixed during RDCNN training Parameters of the second column (e.g., aesthetics) are fine-tuned while training the RDCNN and the learning process is supervised by the label identified by the second column (e.g., aesthetics). Thus, features of the images may be leveraged to boost classification accuracy of other features by learning a RDCNN.
Abstract:
Embodiments of the present invention relate to finding semantic parts in images. In implementation, a convolutional neural network (CNN) is applied to a set of images to extract features for each image. Each feature is defined by a feature vector that enables a subset of the set of images to be clustered in accordance with a similarity between feature vectors. Normalized cuts may be utilized to help preserve pose within each cluster. The images in the cluster are aligned and part proposals are generated by sampling various regions in various sizes across the aligned images. To determine which part proposal corresponds to a semantic part, a classifier is trained for each part proposal and semantic part to determine which part proposal best fits the correlation pattern given by the true semantic part. In this way, semantic parts in images can be identified without any previous part annotations.
Abstract:
In various implementations, a personal asset management application is configured to perform operations that facilitate the ability to search multiple images, irrespective of the images having characterizing tags associated therewith or without, based on a simple text-based query. A first search is conducted by processing a text-based query to produce a first set of result images used to further generate a visually-based query based on the first set of result images. A second search is conducted employing the visually-based query that was based on the first set of result images received in accordance with the first search conducted and based on the text-based query. The second search can generate a second set of result images, each having visual similarity to at least one of the images generated for the first set of result images.
Abstract:
Font graphs are defined having a finite set of nodes representing fonts and a finite set of undirected edges denoting similarities between fonts. The font graphs enable users to browse and identify similar fonts. Indications corresponding to a degree of similarity between connected nodes may be provided. A selection of a desired font or characteristics associated with one or more attributes of the desired font is received from a user interacting with the font graph. The font graph is dynamically redefined based on the selection.