GENERATION OF VISUAL PATTERN CLASSES FOR VISUAL PATTERN REGONITION
    1.
    发明申请
    GENERATION OF VISUAL PATTERN CLASSES FOR VISUAL PATTERN REGONITION 审中-公开
    视觉图案识别视觉图案的生成

    公开(公告)号:US20170061257A1

    公开(公告)日:2017-03-02

    申请号:US15349876

    申请日:2016-11-11

    CPC classification number: G06K9/6282 G06K9/6219 G06K9/6267 G06K9/6807

    Abstract: Example systems and methods for classifying visual patterns into a plurality of classes are presented. Using reference visual patterns of known classification, at least one image or visual pattern classifier is generated, which is then employed to classify a plurality of candidate visual patterns of unknown classification. The classification scheme employed may be hierarchical or nonhierarchical. The types of visual patterns may be fonts, human faces, or any other type of visual patterns or images subject to classification.

    Abstract translation: 提出了将视觉模式分类为多个类的示例系统和方法。 使用已知分类的参考视觉图案,生成至少一个图像或视觉模式分类器,然后将其用于对未知分类的多个候选视觉图案进行分类。 所使用的分类方案可以是分层的或非分层的。 视觉图案的类型可以是字体,人脸或任何其他类型的可分类的视觉图案或图像。

    CONTROLLING SMOOTHNESS OF A TRANSITION BETWEEN IMAGES

    公开(公告)号:US20180293714A1

    公开(公告)日:2018-10-11

    申请号:US16009714

    申请日:2018-06-15

    Abstract: Embodiments described herein are directed to methods and systems for facilitating control of smoothness of transitions between images. In embodiments, a difference of color values of pixels between a foreground image and the background image are identified along a boundary associated with a location at which to paste the foreground image relative to the background image. Thereafter, recursive down sampling of a region of pixels within the boundary by a sampling factor is performed to produce a plurality of down sampled images having color difference indicators associated with each pixel of the down sampled images. Such color difference indicators indicate whether a difference of color value exists for the corresponding pixel. To effectuate a seamless transition, the color difference indicators are normalized in association with each recursively down sampled image.

    CONTROLLING SMOOTHNESS OF A TRANSITION BETWEEN IMAGES
    4.
    发明申请
    CONTROLLING SMOOTHNESS OF A TRANSITION BETWEEN IMAGES 审中-公开
    控制图像之间的转换的平滑性

    公开(公告)号:US20160364846A1

    公开(公告)日:2016-12-15

    申请号:US15160932

    申请日:2016-05-20

    Abstract: Embodiments described herein are directed to methods and systems for facilitating control of smoothness of transitions between images. In embodiments, a difference of color values of pixels between a foreground image and the background image are identified along a boundary associated with a location at which to paste the foreground image relative to the background image. Thereafter, recursive down sampling of a region of pixels within the boundary by a sampling factor is performed to produce a plurality of down sampled images having color difference indicators associated with each pixel of the down sampled images. Such color difference indicators indicate whether a difference of color value exists for the corresponding pixel. To effectuate a seamless transition, the color difference indicators are normalized in association with each recursively down sampled image.

    Abstract translation: 本文描述的实施例涉及用于有助于控制图像之间的转换的平滑度的方法和系统。 在实施例中,沿着与相对于背景图像粘贴前景图像的位置相关联的边界来识别前景图像和背景图像之间的像素的颜色值的差异。 此后,执行边界内像素区域采样因子的递减采样,以产生具有与下采样图像的每个像素相关联的色差指示符的多个下采样图像。 这些色差指示符表示对应的像素是否存在颜色值的差异。 为了实现无缝转换,色差指标与每个递归下采样图像相关联地归一化。

    FONT RECOGNITION AND FONT SIMILARITY LEARNING USING A DEEP NEURAL NETWORK
    5.
    发明申请
    FONT RECOGNITION AND FONT SIMILARITY LEARNING USING A DEEP NEURAL NETWORK 有权
    使用深层神经网络进行识别和相似度学习

    公开(公告)号:US20160364633A1

    公开(公告)日:2016-12-15

    申请号:US14734466

    申请日:2015-06-09

    CPC classification number: G06T3/40 G06K9/6255 G06K9/6828

    Abstract: A convolutional neural network (CNN) is trained for font recognition and font similarity learning. In a training phase, text images with font labels are synthesized by introducing variances to minimize the gap between the training images and real-world text images. Training images are generated and input into the CNN. The output is fed into an N-way softmax function dependent on the number of fonts the CNN is being trained on, producing a distribution of classified text images over N class labels. In a testing phase, each test image is normalized in height and squeezed in aspect ratio resulting in a plurality of test patches. The CNN averages the probabilities of each test patch belonging to a set of fonts to obtain a classification. Feature representations may be extracted and utilized to define font similarity between fonts, which may be utilized in font suggestion, font browsing, or font recognition applications.

    Abstract translation: 对卷积神经网络(CNN)进行字体识别和字体相似学习。 在训练阶段,通过引入差异来合成具有字体标签的文本图像,以最小化训练图像与真实世界文本图像之间的差距。 生成训练图像并将其输入到CNN中。 根据CNN正在训练的字体数量,输出被输入到N-way softmax函数中,产生N类标签上分类文本图像的分布。 在测试阶段,每个测试图像的高度被标准化,并以纵横比挤压,从而产生多个测试贴片。 CNN对属于一组字体的每个测试补丁的概率进行平均,以获得分类。 可以提取和利用特征表示来定义可以在字体建议,字体浏览或字体识别应用中使用的字体之间的字体相似性。

Patent Agency Ranking