Abstract:
The systems and methods of the invention provide a guided approach to pyrosequencing (i.e., hybrid pyrosequencing). A de novo nucleic acid sequence may compared to a library of possible results and the next nucleotide to be dispensed is selected based on the comparison of the de novo sequence and the library of possible results. In another example, at least the first nucleotide to be dispensed is selected based on a query of a database(s) of non-sequence parameters (e.g., incidence of infection, diagnostic symptoms, sample source) and subsequent dispensations determined based on a comparison of the de novo sequence and the library of possible results (e.g., candidate sequences). The systems and methods of the invention may be performed using a droplet actuator.
Abstract:
The present invention provides a droplet actuator device and methods for multiplexed PCR amplification and detection of target amplicons within a single droplet. The methods of the invention combine quantitative real-time PCR (qPCR) amplification with fluorescence-based sequence specific detection technologies for amplified DNA. In one embodiment, fluorescently-labeled oligonucleotide probes may be used for hybridization-based multiplexed detection of target amplicons. The methods of the invention generally involve combining the necessary reactants to form a PCR-ready droplet and thermal cycling the droplet at temperatures sufficient to result in amplification of one or more target nucleic acids. Fluorescence-based detection techniques may be used for end-point or real-time analysis of DNA amplification. For end-point analysis, the accumulation of a signal, e.g., a fluorescence signal, is measured after the amplification of the target sequence is complete. For real-time analysis, the signal is measured while the amplification reaction is in progress.