Abstract:
In various embodiments of the present disclosure, there is provided a receiver for body channel communication. The receiver includes an electrode configured to receive an incoming signal transmitted as a multi-level transmission signal from a transmitter through a body channel, a differentiator configured to obtain a time derivative of the incoming signal indicating a plurality of data transitions, and an analog to digital converter configured to generate a multi-level output signal representing the multi-level transmission signal based on the plurality of data transitions. A corresponding method of controlling a receiver for body channel communications is provided.
Abstract:
An electrocardiogram (ECG) signal processing system is provided. The ECG signal processing system comprises an analog-to-digital converter (ADC) configured to convert an input analog ECG signal into a digital ECG signal, and a digital signal processing engine (DSPE) coupled to the ADC to receive the digital ECG signal. The DSPE is configured to decompose and reconstruct the digital ECG signal. A dynamic system clock source is coupled to the ADC and the DSPE for dynamic signal sampling, the dynamic system clock source clocking the ADC and the DSPE at a first frequency f1 to detect one or more first parameters of the input analog ECG signal and at a second frequency f2 to detect one or more second parameters of the input analog ECG signal.
Abstract:
A method for detecting and correcting an error in a circuit is provided. The circuit is configured to receive an input signal and clock the input signal with a rising and falling timing signal. The method includes detecting late arrival signal transition of the input signal, at an intermediate point of a path, the path being one through which the input signal transits. The method further includes predicting an error in the input signal in response to detecting the late arrival signal transition at the intermediate point of the path. In addition, the method includes correcting the error in the input signal by manipulating the timing signal and/or a supply voltage.