Abstract:
The thrust reverser includes a reverser cowl of which a downstream part of the reverser cowl forms a jet nozzle, cascade vanes fixed upstream from the reverser cowl, thrust reverser flaps, and an actuator. The thrust reverser is translatable under an effect of the actuator between a folded position of the thrust reverser flaps for operation of the nacelle in a direct jet mode, and a deployed position of the thrust reverser flaps for operation of the nacelle in a reverse jet mode. In particular, the stretching of the actuator results in causing a variation in a nozzle section of the jet nozzle as long as the stretching is below a predetermined value, and exposing the cascade vanes and deploying the thrust reverser flaps so as to perform the reverse jet mode beyond the predetermined value.
Abstract:
An air intake structure for a turbojet engine nacelle includes a substantially annular main structure having an internal wall, an external wall and an air intake lip structure connecting the external and internal walls upstream. The air intake structure also includes a first acoustic attenuation structure which has a holed acoustic skin, a cellular core and a solid rear skin with which the internal wall is equipped, and a second acoustic attenuation structure having a similar architecture fitted to a part of the air intake lip substantially near a junction with the internal wall. The rear skin of the first acoustic attenuation structure is aligned with the rear skin of the second acoustic attenuation structure, both of rear skins being structural.
Abstract:
A nacelle for an aircraft turbojet engine includes: a substantially cylindrical internal envelope, a substantially cylindrical external envelope, a downstream partition wall and an upstream partition wall secured to the cylindrical internal envelope and a front lip disposed forward of the upstream partition wall. The cylindrical internal envelope includes an upstream portion including an acoustic shroud connected, by an attachment flange, to a downstream portion including a fan casing. In particular, the front lip is extended and disposed over the upstream partition wall by presenting a downstream edge between the upstream and downstream partition walls in order to be secured to a homologous edge of the cylindrical external envelope so as to arrange a maintenance access to the attachment flange
Abstract:
The present disclosure provides an actuator for an aircraft turbojet engine nacelle, which is interposed between a stationary front part of the nacelle and a moveable rear part of the nacelle. The actuator includes a main actuating arm, and a secondary actuating arm which axially extends from a rear section suitable for being connected on the moveable rear part of the nacelle, to a front section secured to a main nut screwed on a worm drive, in particular, the secondary actuating arm being designed for overcoming a breakdown of the main actuating arm.
Abstract:
A bypass turbojet engine nacelle equipped with a thrust reverser device is provided that includes a cowl with translational mobility and a diversion means supported by a front frame upstream of the cowl. A variable-geometry jet pipe nozzle is mounted at a downstream end of the cowl and is translatable in a direction substantially parallel to a longitudinal axis of the nacelle towards at least one position that causes a variation in its cross-section. At least part of the front frame, the diversion means, and the jet pipe nozzle form an assembly having translational mobility in a direction substantially parallel to a longitudinal axis of the nacelle in a downstream direction of the nacelle towards a position that causes a variation in the cross-section of the jet pipe nozzle, the cowl being in the closed position during that movement of said assembly.
Abstract:
A thrust reverser device for an aircraft turbojet engine includes: a movable cowl, translating cascades connected to the movable cowl, a mast; and a front suspension to suspend the turbojet engine. The cascades translates between a direct jet position where the cascades are retracted in a fan casing, and an indirect jet position where the cascades are brought out of the fan casing. In particular, the cascades have a sliding connection with the mast by means of at least one spacer connected to the mast downstream of the front suspension.
Abstract:
The present disclosure provides an aircraft nacelle including: an outer aerodynamic wall having an upstream air intake lip; an inner aerodynamic wall, the air intake lip connecting the two outer and inner aerodynamic skins; a front wall arranged downstream of the air intake lip and connecting the two outer and inner aerodynamic skins; and a network for the circulation of a first fluid for cooling a second fluid. The network includes two air/oil-type heat exchangers, one air/air type heat exchanger, an air scoop to collect air from the outside of the nacelle, an orifice to collect cold air, and an outlet orifice to discharge air.
Abstract:
A nacelle of a turbine engine includes an external cowling, an internal cowling, and a heat exchanger associated with at least one circulation duct for a fluid. In particular, the circulation duct forms a recirculation loop through the heat exchanger, and the recirculation loop includes at least one circulation area extending at least partially along the external cowling in contact with a wall of the external cowling so as to allow exchange of heat by conduction with the air outside the nacelle.
Abstract:
A turbojet engine nacelle includes a fixed structure, which has a fan casing of the turbojet engine and a front frame mounted downstream of the fan casing and directly or indirectly supporting cascade vanes. The front frame is able to collaborate with a thrust reverser cowling sliding between a closed position covering the flow-diverting means and an open position exposing this flow-diverting means. At least one reinforcing structure of the engine nacelle transmits load between the fan casing and the front frame. The reinforcing structure extends along the longitudinal axis of the nacelle and supports a third line of defense and/or an inhibiting device between the front frame and the thrust reverser cowling.
Abstract:
A de-icing device is provided that includes a piccolo tube integrated with a front bulkhead for limiting an inner volume of a perforated front lip. The piccolo tube is in contact with a noise reduction cellular structure provided with perforations and hot air circulation channels delivered by the piccolo tube, the de-icing hot air being diffused through the perforations and channels of the cellular structure, on the perforations facing the front lip.