Abstract:
Disclosed are a CH3 domain variant pair of an antibody, a method for preparing same, and a use thereof. A mutation is induced in the CH3 domain so as to improve a yield of forming a heterodimer heavy chain constant region of an antibody. The CH3 domain heterodimer forms a heterodimer heavy chain constant region with a high efficiency of 90 to 95% or more and also has outstanding heat stability. A heterodimer heavy chain constant region including the CH3 domain heterodimer can construct a bispecific monoclonal antibody which simultaneously recognizes two kinds of antigens. The CH3 domain heterodimer and the bispecific antibody or fusion protein of an antibody constant region comprising same can be usefully applied to the treatment or prevention of a disease associated with a target antigen or a target protein.
Abstract:
A tumor tissue-penetrating peptide specifically binding to neuropilin, or a fusion protein, a small molecule drug, a nanoparticle, or a liposome having the peptide fused therein is provided, as well as a method for preparing the same and a pharmaceutical composition comprising the same for treating, diagnosing, or preventing cancer or angiogenesis-related diseases. The tumor tissue-penetrating peptide is fused to the C-terminus of an anticancer antibody heavy-chain constant region (Fc) and the fused antibody specifically binds to neuropilin, and specifically accumulates in tumor tissue, widens intercellular gaps between tumor vascular endothelial cells, promotes extravasation, increases infiltration within tumor tissue, and shows a remarkably increased in vivo tumor-suppressing activity. Furthermore, the tumor tissue-penetrating peptide is fused into a fusion protein and inhibits the angiogenic function of neuropilin coreceptors resulting from targeting of neuropilin, and is expected to have an alleviating effect on angiogenesis-related diseases.
Abstract:
Disclosed are a CH3 domain variant pair of an antibody, a method for preparing same, and a use thereof. A mutation is induced in the CH3 domain so as to improve a yield of forming a heterodimer heavy chain constant region of an antibody. The CH3 domain heterodimer forms a heterodimer heavy chain constant region with a high efficiency of 90 to 95% or more and also has outstanding heat stability. A heterodimer heavy chain constant region including the CH3 domain heterodimer can construct a bispecific monoclonal antibody which simultaneously recognizes two kinds of antigens. The CH3 domain heterodimer and the bispecific antibody or fusion protein of an antibody constant region comprising same can be usefully applied to the treatment or prevention of a disease associated with a target antigen or a target protein.