Abstract:
An axial flow turbine diaphragm is constructed without welding or other metal fusion or melting techniques. Static blade units are attached to inner and outer diaphragm rings by radially inner platform portions that engage the radially inner ring, and radially outer platform portion s that engage the radially outer ring, the inner platform portions being elongate in the circumferential direction of the turbine diaphragm and the outer platform portions being elongate in a direction compatible with the stagger angle of the aerofoils. The outer circumference of the radially inner ring has a blade unit retaining feature of complementary shape and orientation to the inner platform portions of the static blade units, and the inner circumference of the radially outer ring is provided with a plurality of blade unit retaining features of complementary shape and orientation to corresponding outer platform portions of the static blade units.
Abstract:
A method of retrofiting a multi-stage partial arc or admission steam turbine and a steam turbine obtainable by the method. The method comprises forming at least one inlet belt in the inner housing downstream of at least one the first blade rows of the steam turbine and forming a duct, connecting the first inlet line and the or each inlet belt. The duct and the inlet belt are adapted to enable a steam to pass through the first inlet line and bypass the first blade row of the steam turbine and the connection of the duct to the first inlet line is such that all steam flowing through the first inlet line passes through the duct.
Abstract:
An axial flow turbine diaphragm is constructed without welding or other metal fusion or melting techniques. Static blade units are attached to inner and outer diaphragm rings by radially inner platform portions that engage the radially inner ring, and radially outer platform portions that engage the radially outer ring, the inner platform portions being elongate in the circumferential direction of the turbine diaphragm and the outer platform portions being elongate in a direction compatible with the stagger angle of the aerofoils. The outer circumference of the radially inner ring has a blade unit retaining feature of complementary shape and orientation to the inner platform portions of the static blade units, and the inner circumference of the radially outer ring is provided with a plurality of blade unit retaining features of complementary shape and orientation to corresponding outer platform portions of the static blade units.
Abstract:
An axial flow turbine diaphragm is constructed without welding or other metal joining techniques as an annular array of static blade units. Each blade unit comprises an aerofoil and radially inner and outer platforms integral with the aerofoil. The radially inner platform consists of a segment of the inner diaphragm ring and the radially outer platform consists of a segment of the outer diaphragm ring. At least the outer ring segment has engagement features that mechanically engage with complementary engagement features on neighboring outer ring segments in the annular array of blade units, the engagement features acting to mechanically interlock neighboring outer ring segments and produce a self-supporting turbine diaphragm.
Abstract:
A turbine diaphragm has radially inner and outer hollow diaphragm rings (22, 24) comprising box structures that include the radially inner and outer platform portions (261, 262) of static blade units (26) as part of their structures. The box structures are strengthened by the incorporation of ribs or struts (28, 30) which extend radially and axially between the walls of the box structures.
Abstract:
An axial flow turbine diaphragm is constructed without welding or other metal joining techniques as an annular array of static blade units. Each blade unit comprises an aerofoil and radially inner and outer platforms integral with the aerofoil. The radially inner platform consists of a segment of the inner diaphragm ring and the radially outer platform consists of a segment of the outer diaphragm ring. At least the outer ring segment has engagement features that mechanically engage with complementary engagement features on neighbouring outer ring segments in the annular array of blade units, the engagement features acting to mechanically interlock neighbouring outer ring segments and produce a self-supporting turbine diaphragm.