Abstract:
The invention relates to a rotor shaft adapted to rotate about a rotor axis thereof. The rotor shaft includes a rotor cavity configured concentrically or quasi-concentrically to the rotor axis inside the rotor shaft, and a plurality of cooling bores extending radially or quasi-radially outward from the inside to an outside of the rotor shaft. Each cooling bore having a bore inlet location and a distal bore outlet portion, the respective bore inlet location being adapted to abut on the rotor cavity. At least one side or part-side of the cooling bore inlet location is provided with an asymmetric edge fillet in order to maximize the wall thickness between two adjacent cooling bores.
Abstract:
A labyrinth seal is provided for sealing the annular interspace between the rotor and the stator of a steam turbine or gas turbine. The labyrinth seal includes a multiplicity of sealing strips which are arranged in series in the axial direction and fastened on the stator and project into the interspace. The sealing strips interact, with sealing effect, with rotor-side sealing elements which are arranged in a staggered manner. An improved sealing effect is achieved by the sealing strips in the cold installed state being offset in relation to a symmetrical position, wherein the offset has the reverse direction and the same amount as the distance by which the sealing strip is displaced relative to adjacent rotor-side sealing elements as a result of thermal expansions of the stationary and rotating components and support structure when being heated from the cold installed state to a hot steady-state operating condition.
Abstract:
The invention pertains to a seal system for a passage between a turbine stator and a turbine rotor, including: a first arm extending radially outwards from the turbine rotor and toward the first seal arranged on the stator, and terminating short of the first seal thereby creating a first gap between the first seal and the first arm. The seal system further includes a second seal arranged on the turbine stator, and a second arm extending axially from the turbine rotor towards the second seal base, and terminating short of the second seal thereby creating a second gap between the second seal and the second arm. The invention further refers to a gas turbine including such a seal system.
Abstract:
A labyrinth seal is provided for sealing the annular interspace between the rotor and the stator of a steam turbine or gas turbine. The labyrinth seal includes a multiplicity of sealing strips which are arranged in series in the axial direction and fastened on the stator and project into the interspace. The sealing strips interact, with sealing effect, with rotor-side sealing elements which are arranged in a staggered manner. An improved sealing effect is achieved by the sealing strips in the cold installed state being offset in relation to a symmetrical position, wherein the offset has the reverse direction and the same amount as the distance by which the sealing strip is displaced relative to adjacent rotor-side sealing elements as a result of thermal expansions of the stationary and rotating components and support structure when being heated from the cold installed state to a hot steady-state operating condition.
Abstract:
The present invention relates to a rotor assembly for a rotary machine such as a gas turbine. The present solution provides a sealing wire located inside a groove engraved in the rotor body. The sealing wire is responsive to radial centrifugal forces acting during normal operation of the machine, and moves radially in the groove until a sealing configuration is achieved such to prevent damaging hot leakage towards machine components.
Abstract:
A gas turbine includes a rotor concentrically surrounded by a casing, with an annular hot gas channel axially extending between the rotor and the casing. The rotor includes a plurality of blades arranged annularly on the rotor. Each of the blades is mounted with a root in a respective axial slot on a rim of the rotor radially extending with an airfoil into the hot gas channel and adjoining with an axially oriented root surface to an annular rim cavity. A cooling device is provided at the root of each blade to receive cooling air injected into the rim cavity through stationary injectors. An optimized cooling is achieved by providing an essentially plane root surface and the cooling device includes a scoop for capturing and redirecting at least part of the injected cooling air, which scoop is a recess with respect to the root surface.
Abstract:
The disclosure pertains to a turbine with a gas turbine blade and a rotor heat shield for separating a space region through which hot working medium flows from a space region inside a rotor arrangement of the turbine. The rotor heat shield includes a platform which forms an axial heat shield section and which is arranged substantially parallel to the surface of a rotor and a radial heat shield section at the upstream end of the axial heat shield section, which is extending in a direction away from the surface of the axial heat shield section towards the hot gas. Further the turbine comprises a blade rear cavity which is delimited by the downstream end of the platform and/or the downstream end of the blade foot, the radial heat shield section. The disclosure further refers to a gas turbine blade and a rotor heat shield designed for such a turbine.
Abstract:
A method and a cooling system for cooling blades of at least one blade row in a rotary flow machine includes an axial flow channel which is radially limited on the inside by a rotor unit and at the outside by at least one stationary component, the blades are arranged at the rotary unit and provide a shrouded blade tip facing radially to said stationary component. Pressurized cooling air is fed through from radially outside towards the tip of each of said blades in the at least one blade row, and the pressurized cooling air enters the blades through at least one opening at the shrouded blades' tip.
Abstract:
A method and a cooling system for cooling blades of at least one blade row in a rotary flow machine includes an axial flow channel which is radially limited on the inside by a rotor unit and at the outside by at least one stationary component, the blades are arranged at the rotary unit and provide a shrouded blade tip facing radially to said stationary component. Pressurized cooling air is fed through from radially outside towards the tip of each of said blades in the at least one blade row, and the pressurized cooling air enters the blades through at least one opening at the shrouded blades' tip.