Abstract:
An insert element for closing an opening inside a wall of a hot gas path component of a gas turbine includes a plate like body with an opening sided surface. The surface provides at least one first area which projects beyond at least one second area of said surface which surrounds the at least one first area frame-like. The at least one first area is encompassed by a circumferential edge corresponding in form and size to the opening such that the circumferential edge and the opening contour limit a gap at least in some areas, while the at least one second area contacts directly or indirectly the wall of the hot gas path component at a rear side facing away from the hot gas path. The plate like body provides at least a first functional layer-system, providing at least one layer made of heat resistant material, defining the first area of the surface (S).
Abstract:
A method is provided for repairing a single crystal turbine blade, which includes an airfoil with a tip having a tip cover plate, tip cooling air holes and a tip crown. The method includes removing the tip crown by manual grinding, thereby preserving the underlying tip cover plate; preparing the tip cooling air holes by manual grinding; closing said prepared tip cooling air holes by manual welding; and building-up a new tip crown by a LMF (Laser Metal Forming) process.
Abstract:
The invention refers an insert element for closing an opening inside a wall of a hot gas path component of a gas turbine. The insert includes a plate like body with an opening sided surface. The surface provides at least one first area which projects beyond at least one second area of said surface which surrounds the at least one first area frame-like. The at least one first area is encompassed by a circumferential edge corresponding in form and size to the opening such that the circumferential edge and the opening contour limit a gap at least in some areas, while the at least one second area contacts directly or indirectly the wall of the hot gas path component at a rear side facing away from the hot gas path. The plate like body provides at least a first functional layer-system, providing at least one layer made of heat resistant material, defining the first area of the surface (S).
Abstract:
A method for post-weld heat treatment of a without a filler material welded high strength component made of a gamma prime (γ′) strengthened superalloy can include providing the welded component, heating the welded component by applying a rapid heating-up rate in the range of 20° C./min to 40° C./min during the entire temperature range from room temperature (RT) up to a temperature T1 of at least 1000° C., holding the welded component at T1 and then heating the component by applying a slow heating-up rate of about 5° C./min to a final temperature Tf, then holding the welded component at Tf for a time tf sufficient for at least partially dissolving the gamma prime phase in a weld of the welded component and also in a base material surrounding the weld, and cooling the component with a cooling rate that is greater than or equal to about 20° C./min.
Abstract:
The invention relates to a method of post-weld heat treatment of a without a filler material electron beam or laser welded high strength component made of a gamma prime (γ′) strengthened superalloy based on Ni or Co or Fe or combinations thereof. The method consists of the following stepsa) providing the welded component, thenb) heating the welded component by applying a rapid heating-up rate in the range of about 20 to 40° C./min during the entire temperature range from RT up to a temperature T1 of at least 1000° C., thenc) holding the welded component at T1 and then heating the component by applying a slow heating-up rate of about 5° C./min to a final temperature Tf, thend) holding the welded component at Tf for a time tf, wherein isothermal dwell time tf is sufficient for at least partially dissolving the gamma prime phase in the weld and also in the base material surrounding the weld; thene) cooling the component with a cooling rate of about 20° C./min andf) finally optionally applying a precipitation hardening treatment according to the known state of the art