Abstract:
A touch screen, now incorporated in most smart phones, presents an effective and transparent method to incorporate continuous active user verification schemes. The projected capacitive grid structure can be used to capture enough information to verify that a valid user currently has possession of the mobile device, even while the user is not consciously engaged in an active verification interface. Further processing, such as habitual gesture recognition, can augment the process.
Abstract:
A Nuclear Quadrupole Resonance detection system with features that include: a) slab radiating structure for the transmit path; b) reduced impedance transmit radiator; c) portal-embedded stripline couplers for receive path; d) wideband chirps each encompassing multiple simultaneous resonances; e) chirp sequencing enabling three channel architecture; f) magnetic amplification effect of ferrite-based directional couplers; g) determining position of substance within portal.
Abstract:
A touch screen, now incorporated in most smart phones, presents an effective and transparent method to incorporate continuous active user verification schemes. The projected capacitive grid structure can be used to capture information, such as from the user's fingerprint. This information may be used to verify the user, or that a valid user currently has possession of the mobile device, even while the user is not consciously engaged in an active verification interface. Further processing, such as habitual gesture recognition, can augment the process.
Abstract:
Techniques for implementing series-fed antenna arrays with a variable dielectric waveguide. In one implementation, coupling elements with optional controlled phase shifters are placed adjacent each radiating element of the array. To avoid frequency sensitivity of the resulting array, one or more waveguides have a variable propagation constant. The variable waveguide may use certain materials exhibiting this phenomenon, or may have configurable gaps between layers. Plated-through holes and pins can control the gaps; and/or a 2-D circular or a rectangular travelling wave array of scattering elements can be used as well.
Abstract:
A Nuclear Quadrupole Resonance detection system with features that include: a) slab radiating structure for the transmit path; b) reduced impedance transmit radiator; c) portal-embedded stripline couplers for receive path; d) wideband chirps each encompassing multiple simultaneous resonances; e) chirp sequencing enabling three channel architecture; f) magnetic amplification effect of ferrite-based directional couplers; g) determining position of substance within portal.
Abstract:
Techniques for implementing series-fed antenna arrays with a variable dielectric waveguide. In one implementation, coupling elements with optional controlled phase shifters are placed adjacent each radiating element of the array. To avoid frequency sensitivity of the resulting array, one or more waveguides have a variable propagation constant. The variable waveguide may use certain materials exhibiting this phenomenon, or may have configurable gaps between layers. Plated-through holes and pins can control the gaps; and/or a 2-D circular or a rectangular travelling wave array of scattering elements can be used as well.
Abstract:
A touchscreen, now incorporated in most smartphones, tablets, laptops, and similar devices, presents an effective and transparent method to incorporate continuous active user verification schemes. The touchscreen element grid structure can be used to capture information, such as a set of one-dimensional time-varying signals produced as the user's finger moves past the grid intersections points. This information may be used to verify the user, or that a valid user currently has possession of the mobile device, even while the user is not consciously engaged in an active verification process. Further functions, such as habitual gesture recognition, can also be performed using the same grid outputs.
Abstract:
Nuclear quadrupole resonance measurement using two or more wire loop(s) within a space to define a portal, and driving the wire loop(s) with a baseband digital transmitter generating a chirped or stepped signal, to create a corresponding varying electromagnetic field within the portal. Coherent emissions reflected thereby are detected through a directional coupler feeding the transceiver. The detected coherent emissions are processed with a matched filter to determine presence of a target object within the portal.
Abstract:
A structure or method for detecting a substance using conductive surfaces. Segments of conductive wire are disposed adjacent each of the surfaces and multi-turn coils are also disposed between the two surfaces, typically such that the windings of the coils are disposed between the respective conductive wires and the surfaces. A linear chirp signal, is applied to the wire segments. With the coils deactivated, emissions from the wire induce the Nuclear Quadrupole Resonance (NQR). With the coils activated to generate a static magnetic field, emissions from the wire induce Nuclear Magnetic Resonance (NMR). As a result, the characteristics of a substance located between the conductive surfaces may be determined using either or both resonant modalties.