Abstract:
Methods and apparatus enabling a wireless network to generate data that can be used by a receiver (e.g., UE) to resolve the contributions of individual transmitters, such as to determine its location without resort to external devices such as GPS satellites. In one embodiment, the wireless network comprises a single frequency network (SFN), and a unique base station identifier is embedded within the data, and encoded in a manner which allows the UE to calculate path characteristics (such as path latency, and Direction of Arrival) to triangulate its position. In one variant, the data encoding comprises weighting frames of data from different base stations using an orthogonal matrix. Advantageously, the encoding and embedded identifier are also transparent to legacy UE, thereby allowing for implementation with no infrastructure or UE modifications other than software. Network and user apparatus implementing these methodologies, and methods of doing business, are also disclosed.
Abstract:
Methods and apparatus for providing useful data in association with a high-priority call such as an emergency call. In one embodiment, the data comprises a data (e.g., an MSD or FSD) embedded within one or more real-time protocol packets such as RTP Control Protocol (RTCP) packets, that are interspersed within the voice or user data stream (carried in e.g., RTP packets) of an emergency call. Apparatus and methods are described for transmitting the data portion reliably from the initiating terminal (e.g., an in-vehicle system) to a Public Safety Answering Point (PSAP), by using the same transport connection as the user data.