Abstract:
Methods and apparatus for providing enhanced access options for wireless access points (e.g., cellular femtocells). These access options in one embodiment include various grades or levels of private and public access to available femtocell services. Each service may be separately assigned a various access type, such that a femtocell may service multiple users both within the “closed” group authorized by the femtocell white list, and non-members. In one variant, a femtocell broadcasts enhanced system information to all terminals (regardless of member/non-member status) such that a non-CSG (Closed Subscriber Group) member terminal or UE is capable of obtaining partial service access within the femtocell. Broadcast multimedia or other services can be delivered to both CSG members and non-members, advantageously without having to establish a dedicated connection for the non-member users.
Abstract:
Methods and apparatus enabling a wireless network to generate data that can be used by a receiver (e.g., UE) to resolve the contributions of individual transmitters, such as to determine its location without resort to external devices such as GPS satellites. In one embodiment, the wireless network comprises a single frequency network (SFN), and a unique base station identifier is embedded within the data, and encoded in a manner which allows the UE to calculate path characteristics (such as path latency, and Direction of Arrival) to triangulate its position. In one variant, the data encoding comprises weighting frames of data from different base stations using an orthogonal matrix. Advantageously, the encoding and embedded identifier are also transparent to legacy UE, thereby allowing for implementation with no infrastructure or UE modifications other than software. Network and user apparatus implementing these methodologies, and methods of doing business, are also disclosed.
Abstract:
Methods and apparatus that enable and optimize the simultaneous operation of several wireless femtocells having overlapping coverage areas. In one embodiment of the invention, a resource allocation (e.g., time-frequency grid for an OFDM or TDMA based wireless network) governs the simultaneous operation of several femtocells with overlapping coverage areas by specifying uses for resources. A resource allocation unit (RAU) entity is disclosed for managing and modifying resource allocations for femtocells. The community of femtocells can flexibly share resources according to the time-frequency grid, thereby maximizing spectral efficiency without requiring substantial network overhead.