Abstract:
Brackets may be mated with or coupled to an opening of an electronic device enclosure or housing for receiving plug connectors to reinforce the receptacle connector and/or device housing and potentially reduce damage/breakage. For example, a bracket can have a front face with a curvature. A back face of the bracket can include a first opening that communicates with a cavity. The cavity can be defined at least in part by upper and lower opposing inner surfaces, the lower inner surface including a portion that extends parallel to a portion of the bracket front face. The bracket can also include a hollow protrusion extending from the bracket front face in a front direction. The hollow protrusion can include an opening that communicates with the opening of the back face and extends through the hollow protrusion. Methods for manufacturing the connector bracket are also provided.
Abstract:
The described embodiments relate generally to device housings and more particularly to methods for blending multiple surfaces of a device housing during a machining process. A method is disclosed that prevents the formation of steps and allows for a smooth transition between flat and curved surfaces by using a profile cutter with an obtuse angle. The profile cutter can extend into the area in which the flat surface is desired while angling upwards and away from the part. This angle can ensure that the boundary between the flat surfaces and curved surfaces forms a shallow peak rather than a step. A shallow peak can be relatively easier to blend during a polishing operation than a step. As a result, the boundaries between surfaces can be hidden from the user of the device and the manufacturing process can be more efficient.
Abstract:
Brackets may be mated with or coupled to an opening of an electronic device enclosure or housing for receiving plug connectors to reinforce the receptacle connector and/or device housing and potentially reduce damage/breakage. For example, a bracket can have a front face with a curvature. A back face of the bracket can include a first opening that communicates with a cavity. The cavity can be defined at least in part by upper and lower opposing inner surfaces, the lower inner surface including a portion that extends parallel to a portion of the bracket front face. The bracket can also include a hollow protrusion extending from the bracket front face in a front direction. The hollow protrusion can include an opening that communicates with the opening of the back face and extends through the hollow protrusion. Methods for manufacturing the connector bracket are also provided.
Abstract:
Systems and methods for ejecting removable entities from electronic devices are provided. A removable entity ejection system may include a driver that may be controllable by software (e.g., via a control unit that may be configured to send electrical signals to the driver). The driver may include a driving component that may apply a force directly, or indirectly, to one or more removable entities to eject the one or more removable entities from an electronic device. When the force is applied indirectly, one or more interfacing components may receive the applied force and may transfer the received force to the one or more removable entities to cause ejection thereof.
Abstract:
Brackets may be mated with or coupled to an opening of an electronic device enclosure or housing for receiving plug connectors to reinforce the receptacle connector and/or device housing and potentially reduce damage/breakage. For example, a bracket can have a front face with a curvature. A back face of the bracket can include a first opening that communicates with a cavity. The cavity can be defined at least in part by upper and lower opposing inner surfaces, the lower inner surface including a portion that extends parallel to a portion of the bracket front face. The bracket can also include a hollow protrusion extending from the bracket front face in a front direction. The hollow protrusion can include an opening that communicates with the opening of the back face and extends through the hollow protrusion. Methods for manufacturing the connector bracket are also provided.
Abstract:
Brackets may be mated with or coupled to an opening of an electronic device enclosure or housing for receiving plug connectors to reinforce the receptacle connector and/or device housing and potentially reduce damage/breakage. For example, a bracket can have a front face with a curvature. A back face of the bracket can include a first opening that communicates with a cavity. The cavity can be defined at least in part by upper and lower opposing inner surfaces, the lower inner surface including a portion that extends parallel to a portion of the bracket front face. The bracket can also include a hollow protrusion extending from the bracket front face in a front direction. The hollow protrusion can include an opening that communicates with the opening of the back face and extends through the hollow protrusion. Methods for manufacturing the connector bracket are also provided.
Abstract:
Systems and methods for ejecting removable entities from electronic devices are provided. A removable entity ejection system may include a driver that may be controllable by software (e.g., via a control unit that may be configured to send electrical signals to the driver). The driver may include a driving component that may apply a force directly, or indirectly, to one or more removable entities to eject the one or more removable entities from an electronic device. When the force is applied indirectly, one or more interfacing components may receive the applied force and may transfer the received force to the one or more removable entities to cause ejection thereof.