HOT-MELT COMPOSITION AND SEALING MATERIAL
    1.
    发明申请

    公开(公告)号:US20200255712A1

    公开(公告)日:2020-08-13

    申请号:US16636984

    申请日:2018-07-30

    IPC分类号: C09J191/00

    摘要: A hot-melt composition includes, with respect to 100 parts by mass of (A) a hydrogenated styrene thermoplastic elastomer having styrene-based polymer blocks at both ends and a hydrogenated diene polymer block at a middle portion and having a mass-average molecular weight of 250,000-600,000, 20-150 parts by mass of (B) a first styrene-based tackifying resin having a softening point of 135-160° C., 100-400 parts by mass of (C) a second styrene-based tackifying resin having a softening point of 105-135° C., 100-500 parts by mass of (D) a third tackifying resin for the hydrogenated diene polymer block having a softening point of 100-160° C. and 500-1,500 parts by mass of (E) a liquid softener. The hot-melt composition has excellent adhesion and easy peel ability, and is a material suitable as a sealing material for a lighting device of an automobile or the like.

    HOT-MELT COMPOSITION AND SEALING MATERIAL

    公开(公告)号:US20210261835A1

    公开(公告)日:2021-08-26

    申请号:US17255248

    申请日:2019-10-11

    摘要: This hot-melt composition contains, per 100 parts by mass of a hydrogenated styrene thermoplastic elastomer having a styrene-based polymer block at both ends thereof and a hydrogenated diene polymer block at a middle portion thereof, and having a mass-average molecular weight of 250,000 to 600,000, 150 to 450 parts by mass of an aromatic tackifying resin having a softening point of 135 to 160° C. and a mass-average molecular weight of 500 to 2,500, 100 to 500 parts by mass of a tackifying resin for a hydrogenated diene polymer block which has a softening point of 100 to 160° C., 500 to 1,500 parts by mass of a non-aromatic hydrocarbon oil having a kinematic viscosity at 40° C. of 90 mm2/s or higher, wherein 30% by mass or more of the non-aromatic hydrocarbon oil is a non-aromatic hydrocarbon oil having a kinematic viscosity at 40° C. of 300 to 500 mm2/s.