Abstract:
A reluctance motor has a stator with a plurality of stator pole bodies arranged circumferentially one after the other and supporting a body and a rotor with a plurality of rotor poles arranged circumferentially one after the other, so that a given turning movement of the rotor causes the permeance between a stator pole and a rotor pole to increase from a minimum value to a maximum value upon half the movement, and then to decrease progressively to the minimum value. The winding is connected to a current source, the voltage of which during motor operation is synchronized in such a way that the average value of the current flowing through the winding while the permeance is increasing is greater than while it is decreasing. The current source is a controlled semiconductor converter connected between a network and a winding and which forms a part of a controlled circuit and delivers a direct current. A current comparison device which controls the converter compares the difference between the current flow through the converter and a varying reference value. This varying reference value is furnished by the combination of a constant reference value and a second reference value, the supply of which is controlled by a switching device operating synchronously with the rotation of the motor. The reference value supplied to the switching device is a combination of a predetermined reference value and a value dependent on the speed of rotation. A phase-advancing circuit is provided to advance the operation of the switch means proportionately to the speed of rotation.