Abstract:
A wet electrolytic capacitor is provided that includes an anode, an anode lead, an electrolyte, a casing having a wall that defines an anode lead orifice, and a sealing assembly. The sealing assembly is connected to the casing at the anode lead orifice, and a portion of the anode lead extends through it. The sealing assembly includes an isolation tube, a metal plate, and an elastomeric ring. The tube receives the anode lead and has a first portion extending through the anode lead orifice and a second portion located in an interior of the casing. The plate is positioned adjacent to an exterior surface of the wall, covers the anode lead orifice, and contains an orifice through which the first portion of the tube extends. The ring is positioned adjacent to an interior surface of the wall and contains an orifice through which the second portion of the tube extends.
Abstract:
A solid electrolytic capacitor including a capacitor element, a first anode lead, a second anode lead, and a carrier wire. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The first and second anode leads each have an embedded portion positioned within the anode body and an external portion extending longitudinally from a surface of the anode body in an x-direction, while the carrier wire is positioned external to the anode body. Further, a first portion of the carrier wire is connected to the external portions of the first and second anode leads, while a second portion of the carrier wire extends longitudinally away from the surface of the anode body in the x-direction. Such an arrangement reduces the ESR and leakage current of the capacitor.
Abstract:
A solid electrolytic capacitor including a capacitor element and an anode lead assembly is provided. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The anode lead assembly includes an anode lead tape having an embedded portion positioned within the anode body and an external portion extending from a surface of the anode body in a longitudinal direction, where the width of the anode lead tape is greater than the height of the anode lead tape. Meanwhile, a carrier lead wire is positioned external to the anode body and includes a first portion and a second portion. The first portion has a substantially planar surface that is connected to the substantially planar surface of the external portion of the anode lead tape.
Abstract:
A solid electrolytic capacitor including a capacitor element, a first anode lead, a second anode lead, and a carrier wire. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The first and second anode leads each have an embedded portion positioned within the anode body and an external portion extending longitudinally from a surface of the anode body in an x-direction, while the carrier wire is positioned external to the anode body. Further, a first portion of the carrier wire is connected to the external portions of the first and second anode leads, while a second portion of the carrier wire extends longitudinally away from the surface of the anode body in the x-direction. Such an arrangement reduces the ESR and leakage current of the capacitor.
Abstract:
An anode for use in a high voltage electrolytic capacitor is provided. The anode contains a sintered porous pellet and a leadwire extending therefrom in a longitudinal direction. The pellet is multi-layered to the extent that it contains at least a first layer positioned adjacent to a second layer, both of which extend along the length of the anode. The anode leadwire is embedded within the first layer. For this reason, the first layer has a thickness greater than that of the leadwire. Nevertheless, the use of a separate and distinct second layer adjacent to the first layer can allow each of the layers to be independently pressed using a multi-sided compaction device so that the properties of the anode are not significantly impacted by the presence of the relatively large anode leadwire.
Abstract:
A solid electrolytic capacitor including a capacitor element and an anode lead assembly is provided. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The anode lead assembly includes a first anode lead having an embedded portion positioned within the anode body and an external portion extending from a surface of the anode body in a longitudinal direction. The external portion includes a substantially planar surface. Meanwhile, the second anode lead is positioned external to the anode body and includes a first portion and a second portion. The first portion has a substantially planar surface that is connected to the substantially planar surface of the external portion of the first anode lead.
Abstract:
A wet electrolytic capacitor is provided that includes an anode, an anode lead, an electrolyte, a casing having a wall that defines an anode lead orifice, and a sealing assembly. The sealing assembly is connected to the casing at the anode lead orifice, and a portion of the anode lead extends through it. The sealing assembly includes an isolation tube, a metal plate, and an elastomeric ring. The tube receives the anode lead and has a first portion extending through the anode lead orifice and a second portion located in an interior of the casing. The plate is positioned adjacent to an exterior surface of the wall, covers the anode lead orifice, and contains an orifice through which the first portion of the tube extends. The ring is positioned adjacent to an interior surface of the wall and contains an orifice through which the second portion of the tube extends.
Abstract:
A solid electrolytic capacitor including a capacitor element and an anode lead assembly is provided. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The anode lead assembly includes a first anode lead having an embedded portion positioned within the anode body and an external portion extending from a surface of the anode body in a longitudinal direction. The external portion includes a substantially planar surface. Meanwhile, the second anode lead is positioned external to the anode body and includes a first portion and a second portion. The first portion has a substantially planar surface that is connected to the substantially planar surface of the external portion of the first anode lead.
Abstract:
A solid electrolytic capacitor including a capacitor element and an anode lead assembly is provided. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The anode lead assembly includes an anode lead tape having an embedded portion positioned within the anode body and an external portion extending from a surface of the anode body in a longitudinal direction, where the width of the anode lead tape is greater than the height of the anode lead tape. Meanwhile, a carrier lead wire is positioned external to the anode body and includes a first portion and a second portion. The first portion has a substantially planar surface that is connected to the substantially planar surface of the external portion of the anode lead tape.
Abstract:
An anode for use in a high voltage electrolytic capacitor is provided. The anode contains a sintered porous pellet and a leadwire extending therefrom in a longitudinal direction. The pellet is multi-layered to the extent that it contains at least a first layer positioned adjacent to a second layer, both of which extend along the length of the anode. The anode leadwire is embedded within the first layer. For this reason, the first layer has a thickness greater than that of the leadwire. Nevertheless, the use of a separate and distinct second layer adjacent to the first layer can allow each of the layers to be independently pressed using a multi-sided compaction device so that the properties of the anode are not significantly impacted by the presence of the relatively large anode leadwire.