摘要:
An inner mounting ring (20) for gas turbine flow path components such as shroud ring segments (24). The inner ring (20) may be mounted to an outer ring (22) on radially slidable mounts (26, 28) that maintain the two rings (20, 22) in coaxial relationship, but allows them to thermally expand at different rates. This allows matching of the radial expansion rate of the inner ring (20) to that of the turbine blade tips (32), thus providing reduced clearance (33) between the turbine blade tips (32) and the inner surface of the shroud ring segments (24) under all engine operating conditions. The inner ring (20) may be made of a material with a lower coefficient of thermal expansion than that of the outer ring (22).
摘要:
An inner mounting ring (20) for gas turbine flow path components such as shroud ring segments (24). The inner ring (20) may be mounted to an outer ring (22) on radially slidable mounts (26, 28) that maintain the two rings (20, 22) in coaxial relationship, but allows them to thermally expand at different rates. This allows matching of the radial expansion rate of the inner ring (20) to that of the turbine blade tips (32), thus providing reduced clearance (33) between the turbine blade tips (32) and the inner surface of the shroud ring segments (24) under all engine operating conditions. The inner ring (20) may be made of a material with a lower coefficient of thermal expansion than that of the outer ring (22).
摘要:
A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.
摘要:
A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.
摘要:
A seal system for an intersection between a turbine stator and a turbine rotor to seal cooling fluids. The seal system may be formed from a seal base extending from the turbine stator, an arm extending radially outward from the turbine rotor and toward the seal base but terminating short of the seal base thereby creating a gap between the seal base and the arm. The seal system may include a honeycomb shaped seal attached to the seal base and extending radially inward from the seal base toward the arm. An outer sealing surface of the seal may be nonparallel with a longitudinal axis about which the turbine rotor rotates thereby enabling the distance of the gap to be reduced with axial movement of the turbine rotor.