GENERATING STYLIZED IMAGES IN REAL TIME ON MOBILE DEVICES

    公开(公告)号:US20220124257A1

    公开(公告)日:2022-04-21

    申请号:US17073697

    申请日:2020-10-19

    Applicant: Adobe Inc.

    Abstract: Methods, systems, and non-transitory computer readable media are disclosed for generating artistic images by applying an artistic-effect to one or more frames of a video stream or digital images. In one or more embodiments, the disclosed system captures a video stream utilizing a camera of a computing device. The disclosed system deploys a distilled artistic-effect neural network on the computing device to generate an artistic version of the captured video stream at a first resolution in real time. The disclosed system can provide the artistic video stream for display via the computing device. Based on an indication of a capture event, the disclosed system utilizes the distilled artistic-effect neural network to generate an artistic image at a higher resolution than the artistic video stream. Furthermore, the disclosed system tunes and utilizes an artistic-effect patch generative adversarial neural network to modify parameters for the distilled artistic-effect neural network.

    Generating stylized images in real time on mobile devices

    公开(公告)号:US11677897B2

    公开(公告)日:2023-06-13

    申请号:US17073697

    申请日:2020-10-19

    Applicant: Adobe Inc.

    Abstract: Methods, systems, and non-transitory computer readable media are disclosed for generating artistic images by applying an artistic-effect to one or more frames of a video stream or digital images. In one or more embodiments, the disclosed system captures a video stream utilizing a camera of a computing device. The disclosed system deploys a distilled artistic-effect neural network on the computing device to generate an artistic version of the captured video stream at a first resolution in real time. The disclosed system can provide the artistic video stream for display via the computing device. Based on an indication of a capture event, the disclosed system utilizes the distilled artistic-effect neural network to generate an artistic image at a higher resolution than the artistic video stream. Furthermore, the disclosed system tunes and utilizes an artistic-effect patch generative adversarial neural network to modify parameters for the distilled artistic-effect neural network.

    Automatically removing moving objects from video streams

    公开(公告)号:US11625813B2

    公开(公告)日:2023-04-11

    申请号:US17085491

    申请日:2020-10-30

    Applicant: Adobe Inc.

    Abstract: The present disclosure describes systems, non-transitory computer-readable media, and methods for accurately and efficiently removing objects from digital images taken from a camera viewfinder stream. For example, the disclosed systems access digital images from a camera viewfinder stream in connection with an undesired moving object depicted in the digital images. The disclosed systems generate a temporal window of the digital images concatenated with binary masks indicating the undesired moving object in each digital image. The disclosed systems further utilizes a 3D to 2D generator as part of a 3D to 2D generative adversarial neural network in connection with the temporal window to generate a target digital image with the region associated with the undesired moving object in-painted. In at least one embodiment, the disclosed systems provide the target digital image to a camera viewfinder display to show a user how a future digital photograph will look without the undesired moving object.

    Automatically removing moving objects from video streams

    公开(公告)号:US12026857B2

    公开(公告)日:2024-07-02

    申请号:US18298146

    申请日:2023-04-10

    Applicant: Adobe Inc.

    Abstract: The present disclosure describes systems, non-transitory computer-readable media, and methods for accurately and efficiently removing objects from digital images taken from a camera viewfinder stream. For example, the disclosed systems access digital images from a camera viewfinder stream in connection with an undesired moving object depicted in the digital images. The disclosed systems generate a temporal window of the digital images concatenated with binary masks indicating the undesired moving object in each digital image. The disclosed systems further utilizes a generator as part of a 3D to 2D generative adversarial neural network in connection with the temporal window to generate a target digital image with the region associated with the undesired moving object in-painted. In at least one embodiment, the disclosed systems provide the target digital image to a camera viewfinder display to show a user how a future digital photograph will look without the undesired moving object.

    GENERATING STYLIZED IMAGES ON MOBILE DEVICES

    公开(公告)号:US20230262189A1

    公开(公告)日:2023-08-17

    申请号:US18309410

    申请日:2023-04-28

    Applicant: Adobe Inc.

    Abstract: Methods, systems, and non-transitory computer readable media are disclosed for generating artistic images by applying an artistic-effect to one or more frames of a video stream or digital images. In one or more embodiments, the disclosed system captures a video stream utilizing a camera of a computing device. The disclosed system deploys a distilled artistic-effect neural network on the computing device to generate an artistic version of the captured video stream at a first resolution in real time. The disclosed system can provide the artistic video stream for display via the computing device. Based on an indication of a capture event, the disclosed system utilizes the distilled artistic-effect neural network to generate an artistic image at a higher resolution than the artistic video stream. Furthermore, the disclosed system tunes and utilizes an artistic-effect patch generative adversarial neural network to modify parameters for the distilled artistic-effect neural network.

    AUTOMATICALLY REMOVING MOVING OBJECTS FROM VIDEO STREAMS

    公开(公告)号:US20230274400A1

    公开(公告)日:2023-08-31

    申请号:US18298146

    申请日:2023-04-10

    Applicant: Adobe Inc.

    Abstract: The present disclosure describes systems, non-transitory computer-readable media, and methods for accurately and efficiently removing objects from digital images taken from a camera viewfinder stream. For example, the disclosed systems access digital images from a camera viewfinder stream in connection with an undesired moving object depicted in the digital images. The disclosed systems generate a temporal window of the digital images concatenated with binary masks indicating the undesired moving object in each digital image. The disclosed systems further utilizes a generator as part of a 3D to 2D generative adversarial neural network in connection with the temporal window to generate a target digital image with the region associated with the undesired moving object in-painted. In at least one embodiment, the disclosed systems provide the target digital image to a camera viewfinder display to show a user how a future digital photograph will look without the undesired moving object.

    EFFICIENT MIXED-PRECISION SEARCH FOR QUANTIZERS IN ARTIFICIAL NEURAL NETWORKS

    公开(公告)号:US20220164666A1

    公开(公告)日:2022-05-26

    申请号:US17100651

    申请日:2020-11-20

    Applicant: Adobe Inc.

    Abstract: A method for performing efficient mixed-precision search for an artificial neural network (ANN) includes training the ANN by sampling selected candidate quantizers of a bank of candidate quantizer and updating network parameters for a next iteration based on outputs of layers of the ANN. The outputs are computed by processing quantized data with operators (e.g., convolution). The quantizers converge to optimal bit-widths that reduce classification losses bounded by complexity constrains.

    AUTOMATICALLY REMOVING MOVING OBJECTS FROM VIDEO STREAMS

    公开(公告)号:US20220138913A1

    公开(公告)日:2022-05-05

    申请号:US17085491

    申请日:2020-10-30

    Applicant: Adobe Inc.

    Abstract: The present disclosure describes systems, non-transitory computer-readable media, and methods for accurately and efficiently removing objects from digital images taken from a camera viewfinder stream. For example, the disclosed systems access digital images from a camera viewfinder stream in connection with an undesired moving object depicted in the digital images. The disclosed systems generate a temporal window of the digital images concatenated with binary masks indicating the undesired moving object in each digital image. The disclosed systems further utilizes a 3D to 2D generator as part of a 3D to 2D generative adversarial neural network in connection with the temporal window to generate a target digital image with the region associated with the undesired moving object in-painted. In at least one embodiment, the disclosed systems provide the target digital image to a camera viewfinder display to show a user how a future digital photograph will look without the undesired moving object.

Patent Agency Ranking