Harmonizing composite images utilizing a transformer neural network

    公开(公告)号:US12165284B2

    公开(公告)日:2024-12-10

    申请号:US17655663

    申请日:2022-03-21

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, non-transitory computer-readable media, and methods that implement a dual-branched neural network architecture to harmonize composite images. For example, in one or more implementations, the transformer-based harmonization system uses a convolutional branch and a transformer branch to generate a harmonized composite image based on an input composite image and a corresponding segmentation mask. More particularly, the convolutional branch comprises a series of convolutional neural network layers followed by a style normalization layer to extract localized information from the input composite image. Further, the transformer branch comprises a series of transformer neural network layers to extract global information based on different resolutions of the input composite image. Utilizing a decoder, the transformer-based harmonization system combines the local information and the global information from the corresponding convolutional branch and transformer branch to generate a harmonized composite image.

Patent Agency Ranking