Abstract:
An image de-blurring system obtains a blurred input image and generates, based on the blurred input image, a blur kernel. The blur kernel is an indication of how the image capture device was moved and/or how the subject captured in the image moved during image capture. Based on the blur kernel and the blurred input image, a de-blurred image is generated. The blur kernel is generated based on the direction of edges identified in the blurred input image and/or based on curves having a high curvature identified in the image (e.g., corners identified in the image).
Abstract:
An image de-blurring system obtains a blurred input image and generates, based on the blurred input image, a blur kernel. The blur kernel is an indication of how the image capture device was moved and/or how the subject captured in the image moved during image capture. Based on the blur kernel and the blurred input image, a de-blurred image is generated. The blur kernel is generated based on the direction of edges identified in the blurred input image and/or based on curves having a high curvature identified in the image (e.g., corners identified in the image).
Abstract:
Systems and methods are provided for providing improved de-noising image content by using directional noise filters to accurately estimate a blur kernel from a noisy blurry image. In one embodiment, an image manipulation application applies multiple directional noise filters to an input image to generate multiple filtered images. Each of the directional noise filters has a different orientation with respect to the input image. The image manipulation application determines multiple two-dimensional blur kernels from the respective filtered images. The image manipulation application generates a two-two-dimensional blur kernel for the input image from the two-dimensional blur kernels for the filtered images. The image manipulation application generates a de-blurred version of the input image by executing a de-blurring algorithm based on the two-dimensional blur kernel for the input image.
Abstract:
Systems and methods are provided for providing improved de-noising image content by using directional noise filters to accurately estimate a blur kernel from a noisy blurry image. In one embodiment, an image manipulation application applies multiple directional noise filters to an input image to generate multiple filtered images. Each of the directional noise filters has a different orientation with respect to the input image. The image manipulation application determines multiple two-dimensional blur kernels from the respective filtered images. The image manipulation application generates a two-two-dimensional blur kernel for the input image from the two-dimensional blur kernels for the filtered images. The image manipulation application generates a de-blurred version of the input image by executing a de-blurring algorithm based on the two-dimensional blur kernel for the input image.
Abstract:
Systems and methods are provided for providing improved de-noising image content by using directional noise filters to accurately estimate a blur kernel from a noisy blurry image. In one embodiment, an image manipulation application applies multiple directional noise filters to an input image to generate multiple filtered images. Each of the directional noise filters has a different orientation with respect to the input image. The image manipulation application determines multiple two-dimensional blur kernels from the respective filtered images. The image manipulation application generates a two- two-dimensional blur kernel for the input image from the two-dimensional blur kernels for the filtered images. The image manipulation application generates a de-blurred version of the input image by executing a de-blurring algorithm based on the two-dimensional blur kernel for the input image.
Abstract:
Systems and methods are provided for providing improved de-noising image content by using directional noise filters to accurately estimate a blur kernel from a noisy blurry image. In one embodiment, an image manipulation application applies multiple directional noise filters to an input image to generate multiple filtered images. Each of the directional noise filters has a different orientation with respect to the input image. The image manipulation application determines multiple two-dimensional blur kernels from the respective filtered images. The image manipulation application generates a two- two-dimensional blur kernel for the input image from the two-dimensional blur kernels for the filtered images. The image manipulation application generates a de-blurred version of the input image by executing a de-blurring algorithm based on the two-dimensional blur kernel for the input image.