REAL-TIME AND LOW LATENCY PACKETIZATION PROTOCOL FOR LIVE COMPRESSED VIDEO DATA

    公开(公告)号:US20190182308A1

    公开(公告)日:2019-06-13

    申请号:US15834400

    申请日:2017-12-07

    Abstract: Systems, apparatuses, and methods for implementing real-time, low-latency packetization protocols for live compressed video data are disclosed. A wireless transmitter includes at least a codec and a media access control (MAC) layer unit. In order for the codec to communicate with the MAC layer unit, the codec encodes the compression ratio in a header embedded inside the encoded video stream. The MAC layer unit extracts the compression ratio from the header and determines a modulation coding scheme (MCS) for transferring the video stream based on the compression ratio. The MAC layer unit and the codec also implement a feedback loop such that the MAC layer unit can command the codec to adjust the compression ratio. Since the changes to the video might not be implemented immediately, the MAC layer unit relies on the header to determine when the video data is coming in with the requested compression ratio.

    Custom Beamforming During a Vertical Blanking Interval

    公开(公告)号:US20190068926A1

    公开(公告)日:2019-02-28

    申请号:US15686927

    申请日:2017-08-25

    Abstract: Systems, apparatuses, and methods for scheduling beamforming training during vertical blanking intervals (VBIs) are disclosed. A system includes a transmitter sending a video stream over a wireless link to a receiver. The wireless link between the transmitter and the receiver has capacity characteristics that fluctuate with variations in the environment. To combat the fluctuating capacity characteristics of the link, the transmitter and the receiver perform periodic beamforming training procedures to determine whether to adjust the beamforming characteristics of their respective antennas. To avoid interfering with the video data being sent, the system waits until a VBI to perform a beamforming training procedure. If the beamforming training procedure cannot be completed in a single VBI, then multiple VBIs can be used for performing separate portions of the beamforming training procedure. In one embodiment, the system can perform a beamforming training procedure every N VBIs, where N is a positive integer.

Patent Agency Ranking