Abstract:
In one embodiment, a method for fabricating a neurostimulation stimulation lead comprises: providing a plurality of ring components and hypotubes in a mold; placing an annular frame with multiple lumens over distal ends of the plurality of hypotubes to position a portion of each hypotube within a respective lumen of the annular frame; molding the plurality of ring components and the hypotubes to form a stimulation tip component for the stimulation lead, wherein the molding fills interstitial spaces between the plurality of ring components and hypotubes with insulative material; and forming segmented electrodes from the ring components after performing the molding.
Abstract:
In one embodiment, a method for fabricating a neurostimulation stimulation lead comprises: providing a plurality of ring components and hypotubes in a mold; placing an annular frame with multiple lumens over distal ends of the plurality of hypotubes to position a portion of each hypotube within a respective lumen of the annular frame; molding the plurality of ring components and the hypotubes to form a stimulation tip component for the stimulation lead, wherein the molding fills interstitial spaces between the plurality of ring components and hypotubes with insulative material; and forming segmented electrodes from the ring components after performing the molding.
Abstract:
In one embodiment, a method for fabricating a neurostimulation stimulation lead comprises: providing a plurality of ring components and hypotubes in a mold; placing an annular frame with multiple lumens over distal ends of the plurality of hypotubes to position a portion of each hypotube within a respective lumen of the annular frame; molding the plurality of ring components and the hypotubes to form a stimulation tip component for the stimulation lead, wherein the molding fills interstitial spaces between the plurality of ring components and hypotubes with insulative material; and forming segmented electrodes from the ring components after performing the molding.
Abstract:
A method for fabricating a neurostimulation stimulation lead includes providing a plurality of ring components and hypotubes. An insulative coating is disposed on at least one of (i) inner surfaces of the ring components or (ii) the hypotubes. The method includes welding the hypotubes to the inner surfaces of the ring components, and molding an insulative material to fill interstitial spaces between the ring components and the hypotubes that are welded to form a stimulation tip component of the stimulation lead. The method includes forming segmented electrodes from the ring components after performing the molding.
Abstract:
In one embodiment, a method for fabricating a neurostimulation stimulation lead comprises: providing a plurality of ring components and hypotubes in a mold; placing an annular frame with multiple lumens over distal ends of the plurality of hypotubes to position a portion of each hypotube within a respective lumen of the annular frame; molding the plurality of ring components and the hypotubes to form a stimulation tip component for the stimulation lead, wherein the molding fills interstitial spaces between the plurality of ring components and hypotubes with insulative material; and forming segmented electrodes from the ring components after performing the molding.
Abstract:
In one embodiment, a method for fabricating a neurostimulation stimulation lead comprises: providing a plurality of ring components and hypotubes in a mold; placing an annular frame with multiple lumens over distal ends of the plurality of hypotubes to position a portion of each hypotube within a respective lumen of the annular frame; molding the plurality of ring components and the hypotubes to form a stimulation tip component for the stimulation lead, wherein the molding fills interstitial spaces between the plurality of ring components and hypotubes with insulative material; and forming segmented electrodes from the ring components after performing the molding.
Abstract:
In one embodiment, a neurostimulation lead comprises: a lead body comprising a plurality of conductor wires; and a molded stimulation tip end comprising a plurality of segmented electrodes, hypotubes, and an annular frame structure: wherein (i) each segmented electrode of the plurality of segmented electrodes has an inner surface, an outer surface, and step-down region embedded within polymer material of the molded stimulation tip end, (ii) each respective hypotube is directly welded to the inner surface of a corresponding segmented electrode of the plurality of segmented electrodes.
Abstract:
In one embodiment, a method for fabricating a neurostimulation stimulation lead comprises: providing a plurality of ring components and hypotubes in a mold; placing an annular frame with multiple lumens over distal ends of the plurality of hypotubes to position a portion of each hypotube within a respective lumen of the annular frame; molding the plurality of ring components and the hypotubes to form a stimulation tip component for the stimulation lead, wherein the molding fills interstitial spaces between the plurality of ring components and hypotubes with insulative material; and forming segmented electrodes from the ring components after performing the molding.
Abstract:
In one embodiment, a method for fabricating a neurostimulation stimulation lead comprises: providing a plurality of ring components and hypotubes in a mold; placing an annular frame with multiple lumens over distal ends of the plurality of hypotubes to position a portion of each hypotube within a respective lumen of the annular frame; molding the plurality of ring components and the hypotubes to form a stimulation tip component for the stimulation lead, wherein the molding fills interstitial spaces between the plurality of ring components and hypotubes with insulative material; and forming segmented electrodes from the ring components after performing the molding.