-
公开(公告)号:US20180299076A1
公开(公告)日:2018-10-18
申请号:US15864464
申请日:2018-01-08
发明人: Camilo Mancilla , Joshua David Isom , Ali Esmaili , Suyash Singh
CPC分类号: F17D3/01 , F17D1/04 , F17D5/005 , G05D7/0641
摘要: Controlling flow of gas in a gas pipeline network, wherein flow within each pipeline segment is associated with a direction (positive or negative). Minimum and maximum signed flow rates are calculated for each pipeline segment constituting lower and upper bounds, respectively, for flow in each pipeline segment. A nonlinear pressure drop relationship is linearized within the lower and upper flow bounds to create a linear pressure drop model for each pipeline segment. A network flow solution is calculated, using the linear pressure drop model, and includes flow rates for each pipeline segment to satisfy demand constraints and pressures for each of a plurality of network nodes to satisfy pressure constraints. Lower and upper bounds on the pressure constraint comprise a minimum delivery pressure and a maximum operating pressure, respectively. The network flow solution is associated with control element setpoints used by a controller to control one or more control elements.
-
公开(公告)号:US09915399B1
公开(公告)日:2018-03-13
申请号:US15490344
申请日:2017-04-18
CPC分类号: F17D3/01 , F17D1/04 , F17D5/005 , G05D7/0629
摘要: Controlling flow of gas in a gas pipeline network, wherein flow of gas within each pipeline segment is associated with a direction (positive or negative). Minimum and maximum delivery rates to each gas receipt facility are determined. Lower and upper flow bounds of gas delivery rate are created by bounding minimum and maximum signed flow rates using minimum and maximum delivery rates, respectively, for each pipe segment. A pressure drop relationship for each pipeline segment within the lower and upper flow bounds is linearized to create a linear pressure drop model for each pipeline segment. A network flow solution is calculated, which includes flow rates for each pipeline segment and pressures for each network nodes to satisfy the lower and upper flow bounds on the gas delivery rate. The network flow solution is associated with control element setpoints used by a controller to control one or more control elements.
-
公开(公告)号:US10415760B2
公开(公告)日:2019-09-17
申请号:US15872214
申请日:2018-01-16
发明人: Joshua David Isom , Andrew Timothy Stamps , Catherine Catino Latshaw , Ali Esmaili , Camilo Mancilla
摘要: Controlling flow of gas in a gas pipeline network, wherein flow of gas within each of the pipeline segments is associated with a direction (positive or negative). Processors calculate minimum and maximum production rates (bounds) at the gas production plant to satisfy an energy consumption constraint over a period of time. The production rate bounds are used to calculate minimum and maximum signed flow rates (bounds) for each pipeline segment. A nonlinear pressure drop relationship is linearized to create a linear pressure drop model for each pipeline segment. A network flow solution is calculated, using the linear pressure drop model, comprising flow rates for each pipeline segment to satisfy demand constraints and pressures for each of a plurality of network nodes over the period of time to satisfy pressure constraints. The network flow solution is associated with control element setpoints used to control one or more control elements.
-
公开(公告)号:US10337674B2
公开(公告)日:2019-07-02
申请号:US15864464
申请日:2018-01-08
发明人: Camilo Mancilla , Joshua David Isom , Ali Esmaili , Suyash Singh
摘要: Controlling flow of gas in a gas pipeline network, wherein flow within each pipeline segment is associated with a direction (positive or negative). Minimum and maximum signed flow rates are calculated for each pipeline segment constituting lower and upper bounds, respectively, for flow in each pipeline segment. A nonlinear pressure drop relationship is linearized within the lower and upper flow bounds to create a linear pressure drop model for each pipeline segment. A network flow solution is calculated, using the linear pressure drop model, and includes flow rates for each pipeline segment to satisfy demand constraints and pressures for each of a plurality of network nodes to satisfy pressure constraints. Lower and upper bounds on the pressure constraint comprise a minimum delivery pressure and a maximum operating pressure, respectively. The network flow solution is associated with control element setpoints used by a controller to control one or more control elements.
-
公开(公告)号:US10323798B2
公开(公告)日:2019-06-18
申请号:US15860072
申请日:2018-01-02
摘要: A system and method for controlling delivery of gas, including a gas pipeline network having at least one gas production plant, at least one gas receipt facility of a customer, a plurality of pipeline segments, and a plurality of control elements, one or more controllers, and one or more processors. The hydraulic feasibility of providing an increased flow rate of the gas to the gas receipt facility of the customer is determined using a linearized pressure drop model. A latent demand of the customer for the gas is estimated using a latent demand model. Based on the hydraulic feasibility and the latent demand, a new gas flow request rate from the customer is received. A network flow solution is calculated based on the new gas flow request rate. The network flow solution is associated with control element setpoints used by a controller to control one or more control elements.
-
公开(公告)号:US09897259B1
公开(公告)日:2018-02-20
申请号:US15490268
申请日:2017-04-18
发明人: Camilo Mancilla , Joshua David Isom , Ali Esmaili , Suyash Singh
CPC分类号: F17D3/01 , F17D1/04 , F17D5/005 , G05D7/0617
摘要: Controlling flow of gas in a gas pipeline network, wherein flow within each pipeline segment is associated with a direction (positive or negative). Minimum and maximum signed flow rates are calculated for each pipeline segment constituting lower and upper bounds, respectively, for flow in each pipeline segment. A nonlinear pressure drop relationship is linearized within the lower and upper flow bounds to create a linear pressure drop model for each pipeline segment. A network flow solution is calculated, using the linear pressure drop model, and includes flow rates for each pipeline segment to satisfy demand constraints and pressures for each of a plurality of network nodes to satisfy pressure constraints. Lower and upper bounds on the pressure constraint comprise a minimum delivery pressure and a maximum operating pressure, respectively. The network flow solution is associated with control element setpoints used by a controller to control one or more control elements.
-
公开(公告)号:US10746470B2
公开(公告)日:2020-08-18
申请号:US15962480
申请日:2018-04-25
发明人: Ali Esmaili , Hu Li , Matthew James Labuda , Joshua David Isom
摘要: A method of operating a furnace having process tubes and multiple burners where it is desired to conform the temperatures of the process tubes to selected target temperature criterion. The present method provides a systematic and quantitative approach to determine how to adjust burner flow rates to result in desired tube wall temperatures, for example, using objective functions to decrease the probability that temperatures pertaining to the plurality of process tubes exceed their selected limit temperatures. An objective function can also be used to reduce the excess oxidant requirement for the furnace.
-
公开(公告)号:US20180106740A1
公开(公告)日:2018-04-19
申请号:US15410883
申请日:2017-01-20
发明人: Ali Esmaili , Joshua David Isom , Suyash Singh
CPC分类号: G01N25/28 , C01B3/38 , C01B3/384 , C01B3/48 , C01B2203/0233 , C01B2203/0288 , C01B2203/0294 , C01B2203/043 , C01B2203/0495 , C01B2203/0827 , C01B2203/0894 , C01B2203/1619 , C01B2203/1657 , G01N33/0047 , Y02P20/52
摘要: A method and system for determining changes in the catalytic activity of reforming catalyst where an outlet temperature of the catalytic reactor is measured and a temperature approach to equilibrium calculated based on the measured outlet temperature. The temperature approach to equilibrium is compared to an empirical model-based temperature approach to equilibrium calculated for the same operating conditions, the comparison showing changes in the catalytic activity of the reforming catalyst.
-
公开(公告)号:US09945801B1
公开(公告)日:2018-04-17
申请号:US15293653
申请日:2016-10-14
发明人: Ali Esmaili , Joshua David Isom , Suyash Singh
CPC分类号: G01N25/28 , C01B3/38 , C01B2203/0233 , C01B2203/16
摘要: A method and system for determining changes in the catalytic activity of reforming catalyst where an outlet temperature of the catalytic reactor is measured and a temperature approach to equilibrium calculated based on the measured outlet temperature. The temperature approach to equilibrium is compared to an empirical model-based temperature approach to equilibrium calculated for the same operating conditions, the comparison showing changes in the catalytic activity of the reforming catalyst.
-
公开(公告)号:US09897260B1
公开(公告)日:2018-02-20
申请号:US15490308
申请日:2017-04-18
发明人: Camilo Mancilla , Ali Esmaili , Joshua David Isom , Catherine Catino Latshaw , Oliver Jacob Smith, IV
CPC分类号: F17D3/01 , F17D1/04 , F17D5/005 , G05D7/0635
摘要: Controlling flow of gas in an gas pipeline network, wherein flow of gas within each of the pipeline segments is associated with a direction (positive or negative). Processors calculate minimum and maximum production rates (bounds) at the gas production plant to satisfy an energy consumption constraint over a period of time. The production rate bounds are used to calculate minimum and maximum signed flow rates (bounds) for each pipeline segment. A nonlinear pressure drop relationship is linearized to create a linear pressure drop model for each pipeline segment. A network flow solution is calculated, using the linear pressure drop model, comprising flow rates for each pipeline segment to satisfy demand constraints and pressures for each of a plurality of network nodes over the period of time to satisfy pressure constraints. The network flow solution is associated with control element setpoints used to control one or more control elements.
-
-
-
-
-
-
-
-
-