Abstract:
The device comprises servocontrol means which automatically control, in a combined manner, an automatic thrust system of the aircraft and airbrakes of the aircraft, as a supplement to usual means for steering the vertical trajectory, so that the aircraft attains a speed setpoint and/or altitude setpoint, at the location defined by a geographical constraint.
Abstract:
The device comprises servocontrol means which automatically control, in a combined manner, an automatic thrust system of the aircraft and airbrakes of the aircraft, as a supplement to usual means for steering the vertical trajectory, so that the aircraft attains a speed setpoint and/or altitude setpoint, at the location defined by a geographical constraint.
Abstract:
A human machine interface linked to the throttle lever of an aircraft used to control the energy of an aircraft is disclosed. The HMI has upper part, which corresponds to the forward stroke of the lever, and a lower part, which corresponds to the rearward stroke of the lever. An upper shutter is positioned over the upper part, and a lower shutter is positioned over the lower part. A “cursor” acts as a visual representation in the HMI of the lever and its handle. The cursor moves forward or backward as the pilot acts on the lever/handle. The cursor indicates an ordered release of more or less aircraft energy, depending on its position on the display. The upper and lower shutters also indicate the ordered release of more or less aircraft energy, depending on the respective lengths of the two shutters. The HMI also includes a column in the display having a length symbolizing a current value in actual aircraft push or braking, depending on whether an aircraft push or braking has been ordered by releasing of more or less aircraft energy. The column changes in length as the actual aircraft push or braking changes. The cursor is further depicted in the HMI display as containing a memorizing button on the handle and a Go-Lever button on the lever below the handle.
Abstract:
A system for controlling an aircraft control parameter including a control interface including a mobile element configured to move on a travel, of which at least two portions are separated by a neutral position; a return element bringing the mobile element back to the neutral position when it is not actuated; and an interaction element, and a control unit configured to memorize an item of information corresponding to a first position of the mobile element at an instant of activation of the interaction element; and generate a setpoint of the aircraft control parameter, as a function of a control associated with the first position of the mobile element for which said information has been memorized; or a current position of the mobile element, when this current position is situated on the same portion of travel as the first position and is more remote than the latter from the neutral position.
Abstract:
A system for controlling an aircraft control parameter including a control interface including a mobile element configured to move on a travel, of which at least two portions are separated by a neutral position; a return element bringing the mobile element back to the neutral position when it is not actuated; and an interaction element, and a control unit configured to memorize an item of information corresponding to a first position of the mobile element at an instant of activation of the interaction element; and generate a setpoint of the aircraft control parameter, as a function of a control associated with the first position of the mobile element for which said information has been memorized; or a current position of the mobile element, when this current position is situated on the same portion of travel as the first position and is more remote than the latter from the neutral position.