摘要:
An aluminum alloy sheet for a lithographic printing plate which allows pits to be more uniformly formed by an electrochemical surface-roughening treatment and exhibits more excellent adhesion to a photosensitive film and water retention properties, and a method of producing the same are disclosed. The aluminum alloy sheet includes 0.1 to 1.5% of Mg, more than 0.05% and 0.5% or less of Zn, 0.1 to 0.6% of Fe, 0.03 to 0.15% of Si, 0.0001 to 0.10% of Cu, and 0.0001 to 0.05% of Ti, with the balance being aluminum and impurities, the Mg content and the Zn content satisfying a relationship “4×Zn %−1.4%≦Mg %≦4×Zn %+0.6%”, and the amount of aluminum powder on the surface of the aluminum alloy sheet being 0.1 to 3.0 mg/m2. It is more effective when precipitates with a diameter (circle equivalent diameter) of 0.1 to 1.0 μm are dispersed on the surface of the sheet in a number of 10,000 to 100,000 per square millimeter (mm2).
摘要:
An aluminum alloy sheet for a lithographic printing plate includes 0.03 to 0.15% (mass %, hereinafter the same) of Si, 0.2 to 0.7% of Fe, 0.05 to 0.5% of Mg, 0.003 to 0.05% of Ti, and 30 to 300 ppm of Ga, with the balance being aluminum and inevitable impurities, a surface area of the aluminum alloy sheet having an average recrystallized grain size of 50 μm or less in a direction perpendicular to a rolling direction, an Mg concentration that is higher than the average Mg concentration by a factor of 5 to 50, and a Ga concentration that is higher than the average Ga concentration by a factor of 2 to 20, the surface area being an area up to a depth of 0.2 μm from the surface of the aluminum alloy sheet.
摘要:
A method of producing an aluminum alloy sheet for a lithographic printing plate includes homogenizing an ingot of an aluminum alloy at 500 to 610° C. for one hour or more, the aluminum alloy containing 0.05 to 1.5% of Mg, 0.1 to 0.7% of Fe, 0.03 to 0.15% of Si, 0.0001 to 0.10% of Cu, and 0.0001 to 0.1% of Ti, with the balance being aluminum and unavoidable impurities, subjecting the homogenized product to rough hot rolling, a start temperature of the rough hot rolling being 430 to 500° C. and a finish temperature of the rough hot rolling being 400° C. or more, holding the product subjected to the rough hot rolling for 60 to 300 seconds after completion of the rough hot rolling to recrystallize the surface of the product, subjecting the resulting product to finish hot rolling that is finished at 320 to 370° C., and winding up the resulting product in the shape of a coil to obtain a hot-rolled product having a surface with an average recrystallized grain size in a direction perpendicular to a rolling direction of 50 μm or less. The aluminum alloy may contain 2 to 30 ppm of Pb.
摘要:
An aluminum alloy sheet for a lithographic printing plate includes 0.03 to 0.15% (mass %, hereinafter the same) of Si, 0.2 to 0.7% of Fe, 0.05 to 0.5% of Mg, 0.003 to 0.05% of 11, and 30 to 300 ppm of Ga, with the balance being aluminum and inevitable impurities, a surface area of the aluminum alloy sheet having an average recrystallized grain size of 50 μm or less in a direction perpendicular to a rolling direction, an Mg concentration that is higher than the average Mg concentration by a factor of 5 to 50, and a Ga concentration that is higher than the average Ga concentration by a factor of 2 to 20, the surface area being an area up to a depth of 0.2 μm from the surface of the aluminum alloy sheet.
摘要:
An aluminum alloy sheet for a lithographic printing plate is obtained by homogenizing an ingot of an aluminum alloy at 500 to 610° C. for one hour or more, the aluminum alloy containing 0.03 to 0.15% of Si, 0.2 to 0.6% of Fe, 0.005 to 0.05% of Ti, and 2 to 30 ppm of Pb, with the balance being aluminum and unavoidable impurities, subjecting the homogenized product to rough hot rolling, a start temperature of the rough hot rolling being 430 to 500° C. and a finish temperature of the rough hot rolling being 400° C. or more, holding the product subjected to rough hot rolling for 60 to 300 seconds after the completion of the rough hot rolling to recrystallize the surface of the product, and subjecting the resulting product to finish hot rolling that is finished at 320 to 370° C. The aluminum alloy sheet has an average recrystallized grain diameter of 50 μm or less in a surface area in a direction perpendicular to a rolling direction, and has a Pb concentration 100 to 400 times an average Pb concentration in a surface area up to a depth of 0.2 μm from the surface of the aluminum alloy sheet.
摘要:
An aluminum alloy sheet for a lithographic printing plate is obtained by homogenizing an ingot of an aluminum alloy at 500 to 610° C. for one hour or more, the aluminum alloy containing 0.03 to 0.15% of Si, 0.2 to 0.6% of Fe, 0.005 to 0.05% of Ti, and 2 to 30 ppm of Pb, with the balance being aluminum and unavoidable impurities, subjecting the homogenized product to rough hot rolling, a start temperature of the rough hot rolling being 430 to 500° C. and a finish temperature of the rough hot rolling being 400° C. or more, holding the product subjected to rough hot rolling for 60 to 300 seconds after the completion of the rough hot rolling to recrystallize the surface of the product, and subjecting the resulting product to finish hot rolling that is finished at 320 to 370° C. The aluminum alloy sheet has an average recrystallized grain diameter of 50 μm or less in a surface area in a direction perpendicular to a rolling direction, and has a Pb concentration 100 to 400 times an average Pb concentration in a surface area up to a depth of 0.2 μm from the surface of the aluminum alloy sheet.
摘要:
The present invention provides an aluminum alloy sheet for a lithographic printing plate which allows pits to be uniformly formed by electrochemical roughening, and excels in strength and heat softening resistance. The aluminum alloy sheet for a lithographic printing plate includes 0.1-0.3% of Mg, more than 0.05%, but 0.5% or less of Zn, 0.2-0.6% of Fe, 0.03-0.15% of Si, 0.02% or less of Cu, and 0.003-0.05% of Ti, the remainder being Al and impurities. The aluminum alloy sheet may include more than 0.05%, but 0.3% or less of Mn.
摘要:
An X-ray CT apparatus is capable of obtaining an image of arbitrary size for an arbitrary part of an object to be examined. The X-ray CT apparatus prepares two-dimensional data and three-dimensional data from a plurality of X-ray information obtained by driving an X-ray tube and an X-ray information detector through one rotation around a patient in a range between a lower jaw and the eyes of the patient, and it displays a tomographic image based thereon on a display unit. A rotational mechanism is fitted to a support, a U-shaped arm is mounted on the support with the X-ray tube and the X-ray information inputting means facing each other and fitted, and the image of an arbitrary size of an arbitrary part of the patient is collected and displayed as the patient is supported in a chair which is capable of being electrically-driven in the vertical direction.
摘要:
An X-ray fluoroscope table and an X-ray fluoroscope system using this fluoroscope table with simple structure and easily ensuring an area where a person stands near the top board.An X-ray fluoroscope table (1) comprises a stand unit (10), a support arm unit (20), a support frame (30), a top board (40), an X-ray generator (60), a column unit (50), and an X-ray detector (FPD 70).The end of the column unit (50) on the support frame side (30) and the end on the X-ray generator (60) side are displaced from each other in the length direction of the support frame (30).With this constitution, the area where an operator (OP3) stands can be ensured near the column unit (50).An X-ray fluoroscope system is constituted of this fluoroscope table (1), a high-voltage generator for supplying electric power to the fluoroscope table (1), and a remote control console for integrally controlling them.