Abstract:
A burner for the combustion of a pulverized coal plus primary air mixture includes a nozzle pipe having an inlet for receiving a pulverized coal plus primary air mixture and an outlet for discharging same. A hollow plug extends axially within the nozzle pipe and defines an annular space between the plug and the nozzle pipe for conveying the pulverized coal plus primary air mixture therethrough. The hollow plug is axially moveable within the nozzle pipe. A variable amount of core air is supplied into the hollow plug so that it mixes with the primary air plus pulverized coal mixture at an outlet of the burner to vary the PA/PC ratio and maintain a desired primary air to primary coal ratio at the outlet of the burner. Natural gas can also be supplied into the hollow plug as a supplemental fuel for cofiring at the outlet end of the burner. The amount of core air supplied is based upon (1) the coal flow rate being provided to the burner, in lb/hr, and (2) the percent volatile matter content (%VM) in the coal being burned.
Abstract:
A large diameter mid-zone air separation cone is provided for decreasing NOx during burner operation by expanding the internal recirculation zone (IRZ) at the burner exit. The mid-zone air separation cone has a short cylindrical leading edge that fits in the outer air zone of a burner. The mid-zone air separation cone splits the outer air zone secondary air flow into two equal or unequal streams depending on the position of the air separation cone with respect to the outer air zone, and deflects a portion of the secondary air flow radially outward. Since the radial position of the air separation cone is farther from the burner centerline, the IRZ size is expanded and NOx emissions are minimized.
Abstract:
A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.
Abstract:
A large diameter mid-zone air separation cone is provided for decreasing NOx during burner operation by expanding the internal recirculation zone (IRZ) at the burner exit. The mid-zone air separation cone has a short cylindrical leading edge that fits in the outer air zone of a burner. The mid-zone air separation cone splits the outer air zone secondary air flow into two equal or unequal streams depending on the position of the air separation cone with respect to the outer air zone, and deflects a portion of the secondary air flow radially outward. Since the radial position of the air separation cone is farther from the burner centerline, the IRZ size is expanded and NOx emissions are minimized.
Abstract:
A compound spin vane (CSV) for use in an air passage of a fossil fuel-fired burner. In one embodiment, the CSV is a multi-piece construction of platelike outer and inner vane elements connected to an intermediate platelike rail element. In another embodiment, the CSV includes at least two and possibly three vane portions, rigidly interconnected in spaced lateral relationship with respect to each other. If desired, the vane portions may be simple, curved planar surfaces, and may be arranged with trailing edges arranged at angles with respect to each other. The invention may be employed as a replacement for flat spin vanes found in secondary air passages of known single and dual register burners. When used in such manner in a single register burner, the invention changes secondary air flow characteristics so as to mimic those commonly found in a dual register burner.
Abstract:
A new burner apparatus and method of combusting fossils fuels for commercial and industrial application is provided wherein the new burner apparatus achieves low NOx emissions by supplying oxygen to the center of the burner flame in as manners so as to create a fuel rich internal combustion zone within the burner flame.
Abstract:
A compound spin vane (CSV) for use in an air passage of a fossil fuel-fired burner. In one embodiment, the CSV is a multi-piece construction of platelike outer and inner vane elements connected to an intermediate platelike rail element. In another embodiment, the CSV includes at least two and possibly three vane portions, rigidly interconnected in spaced lateral relationship with respect to each other. If desired, the vane portions may be simple, curved planar surfaces, and may be arranged with trailing edges arranged at angles with respect to each other. The invention may be employed as a replacement for flat spin vanes found in secondary air passages of known single and dual register burners. When used in such manner in a single register burner, the invention changes secondary air flow characteristics so as to mimic those commonly found in a dual register burner.
Abstract:
A compound spin vane (CSV) for use in an air passage of a fossil fuel-fired burner. In one embodiment, the CSV is a multi-piece construction of platelike outer and inner vane elements connected to an intermediate platelike rail element. In another embodiment, the CSV includes at least two and possibly three vane portions, rigidly interconnected in spaced lateral relationship with respect to each other. If desired, the vane portions may be simple, curved planar surfaces, and may be arranged with trailing edges arranged at angles with respect to each other. The invention may be employed as a replacement for flat spin vanes found in secondary air passages of known single and dual register burners. When used in such manner in a single register burner, the invention changes secondary air flow characteristics so as to mimic those commonly found in a dual register burner.
Abstract:
In a gyrotron cavity resonator, generated energy is extracted into a symmetric set of fundamental-mode waveguides by ports disposed to couple energy in phase from the operating electromagnetic mode but in anti-phase with respect to an unwanted mode of lower cutoff frequency than the operating mode, thereby neutralizing coupling to the unwanted mode. A second set of interspersed ports may be disposed to load degenerate, orthogonal modes.
Abstract:
An improved pulverized fuel burning method and apparatus having means for decreasing the pressure drop through the burner nozzle and decreasing the formation of nitric oxides, including a splash plate to breakup a natural forming fuel-rope, a deflector to deflect the fuel-rope, and a diffuser to disperse the pulverized fuel into a more desirable fuel burning distribution pattern.