Abstract:
A burner includes: an inner gas nozzle which extends along an axis while surrounding the axis, and which is capable of supplying a furnace with an inner combustion oxygen containing gas; a fuel supply nozzle surrounding the inner gas nozzle as seen in a direction along the axis, the fuel supply nozzle being capable of supplying the furnace with a fluid mixture of a solid powder fuel and a carrier gas; an outer gas nozzle surrounding the fuel supply nozzle as seen in the direction along the axis, the outer gas nozzle being capable of supplying the furnace with an outer combustion oxygen containing gas; and a flow-velocity-ratio adjustment apparatus capable of adjusting a relative flow velocity ratio of a discharge flow velocity of the inner combustion oxygen containing gas to a discharge flow velocity of the outer combustion oxygen containing gas.
Abstract:
Provided is a combustion burner including: a fuel nozzle (51) that is able to blow a fuel gas obtained by mixing pulverized coal with primary air; a secondary air nozzle (52) that is able to blow secondary air from the outside of the fuel nozzle (51); a flame stabilizer (54) that is provided at a front end portion of the fuel nozzle (51) so as to be near the axis center; and a rectification member (55) that is provided between the inner wall surface of the fuel nozzle (51) and the flame stabilizer (54), wherein an appropriate flow of a fuel gas obtained by mixing solid fuel with air may be realized.
Abstract:
A head assembly for a pulverized coal nozzle includes removeable wear-resistant inserts having vanes. The vanes may be flat or curved to direct a stream of air and pulverized solid fuel particles from the inlet port toward the outlet port. The curved vanes curve in two dimensions to evenly distribute the stream of air and pulverized solid fuel away from the outer surfaces reducing wear and corrosion. The pipe elbow has a removable cover that allows for easy access. The vanes are attached to a wear-resistant replaceable liner thus allowing them to be easily removed and replaced. The wear-resistant liner may be made from several parts for ease of removal and replacement.
Abstract:
A supply device for supplying solid particles and a carrier fluid to a heat generating plant combustion chamber. The supply device has a first end, a second end, a tube, an opening through the tube at the first end, and a supply pipe. A first end of the pipe is proximal to the first end of the supply device and has an opening defining an outlet of the pipe. A second end of the pipe is distal to the first end of the supply device, has an opening defining an inlet of the pipe, and is connected to an inside surface of the tube. The supply pipe defines a curved flow channel within the tube, and the flow channel at the outlet of the pipe has a direction towards the opening through the tube which is at an angle to the longitudinal axis of the supply device.
Abstract:
A head assembly 52,152 for a pulverized coal nozzle includes a turning vane 54 or a curved vane 154 disposed within a pipe elbow. The vanes 54,154 are angled relative to the inlet port and the outlet port of the pipe elbow to redirect a stream of air and pulverized solid fuel particles from the inlet port 60,160 toward the outlet port 62,162. The coal rope-breaking vane 56 is pivotable about an axis to adjust an angle of the vanes relative to a stream of air and pulverized solid fuel particles from the inlet port 60,160. An adjustment bar 66 may connect to the vanes 56 and extend outward through the pipe elbow to allow the vanes 56 to be adjusted while the pulverized solid fuel particles flow through the head assembly 52. The pipe elbow may further include inspection ports 68,168 and a removable cover 70,170. The vanes may be attached to the removable cover 70,170 thus allowing them to be easily removed and replaced.
Abstract:
A combustion burner 1 includes a fuel nozzle 2 that injects fuel gas prepared by mixing solid fuel and primary air, secondary air nozzles 3, 4 that inject secondary air from the outer periphery of the fuel nozzle 2, and a flame holder 5 that is arranged in an opening of the fuel nozzle 2. In the combustion burner 1, the flame holder 5 has a splitting shape that widens in the flow direction of the fuel gas. When seen in cross section along a direction in which the flame holder 5 widens, the cross section passing through the central axis of the fuel nozzle 2, a maximum distance h from the central axis of the fuel nozzle 2 to the widened end of the flame holder 5 and an inside diameter r of the opening 21 of the fuel nozzle 2 satisfy h/(r/2)
Abstract:
A wide-flame solid fuel/oxygen burner including a fuel nozzle having an aspect ratio of at least about 2 defined by the ratio of a fuel nozzle width, W, measured along a major axis centerline, to a fuel nozzle height, H, measured along a minor axis centerline, and long walls spaced substantially symmetrically from the major axis centerline, the fuel nozzle having an inlet width, WN; and a pair of guide vanes positioned on either side of the major axis centerline between that centerline and an adjacent long wall, the guide vanes diverging from the major axis centerline in the flow direction by an angle such that the guide vanes are closer together at an upstream end and farther apart at a downstream end, thereby forming a central diffuser between the guide vanes and an outer converging nozzle between each guide vane and one of the long walls.
Abstract:
A pneumatic fuel distributor for solid fuel boilers is described incorporating in various embodiments one or more of the following features: a converging nozzle section, a converging adjustable orifice section and an integral trajectory plate. The nozzle, orifice and trajectory plate are preferably all interconnected and rotate together about a common axis. The orifice damper is, in one embodiment, a rotating convergent section and independently adjustable. The unit preferably incorporates a viewing glass and access port and the rotating components are preferably removable for maintenance. The unit is preferably reversible for left or right hand installation and the trajectory plate is easily replaceable.
Abstract:
A deflector device for improving particle distribution within a coal piping system includes a base defining an outer circumference. The base is configured to be mounted inside a pipe such that the base extends partially around the inner circumference of the pipe with the circumferences of the pipe and base being substantially aligned concentrically. A deflector extends radially inward from the base. The deflector is configured to direct a concentrated flow of coal particles toward the center of the pipe.
Abstract:
A head assembly 52, 152 for a pulverized coal nozzle includes removeable wear-resistant inserts having vanes 54, 151, 153. The vanes 54, 151, 153 may be flat or curved to direct a stream of air and pulverized solid fuel particles from the inlet port 60, 160 toward the outlet port 62, 162. The curved vanes 151, 153 curve in two dimensions to evenly distribute the stream of air and pulverized solid fuel away from the outer surfaces reducing wear and corrosion. The pipe elbow has a removable cover 70, 170 that allows for easy access. The vanes are attached to a wear-resistant replaceable liner 185 thus allowing them to be easily removed and replaced. The wear-resistant liner 185 may be made from several parts 187, 189 for ease of removal and replacement.