Abstract:
An optical line terminal transmitter front-end, an optical network terminal receiver front-end and a bit-interleaved passive optical network (BIPON). In one embodiment, the transmitter front-end includes: (1) a bit interleaver configured to group and interleave a plurality of user bit-streams to yield a combined single bit-stream, (2) an encoder coupled to the bit interleaver and configured to encode multiple bits of the single bit-stream into a multi-level code corresponding to a 2m-level multi-level signal and (3) a multi-level modulator coupled to the encoder and configured to modulate the multi-level code into the 2m-level multi-level signal.
Abstract:
Various embodiments of an optical transmitter and a method of operating an optical transmitter are disclosed. In one embodiment, the optical transmitter includes a laser and a laser driver configured to drive the laser using either a voltage driving topology (CDT) or a current-driving topology (VDT). The laser driver includes a switch that is configured to switch between the CDT and the CDT based on an operating frequency of the optical transmitter.
Abstract:
An optical line terminal transmitter front-end, an optical network terminal receiver front-end and a bit-interleaved passive optical network (BIPON). In one embodiment, the transmitter front-end includes: (1) a bit interleaver configured to group and interleave a plurality of user bit-streams to yield a combined single bit-stream, (2) an encoder coupled to the bit interleaver and configured to encode multiple bits of the single bit-stream into a multi-level code corresponding to a 2m-level multi-level signal and (3) a multi-level modulator coupled to the encoder and configured to modulate the multi-level code into the 2m-level multi-level signal.
Abstract:
Various embodiments of an optical transmitter and a method of operating an optical transmitter are disclosed. In one embodiment, the optical transmitter includes a laser and a laser driver configured to drive the laser using either a voltage driving topology (CDT) or a current-driving topology (VDT). The laser driver includes a switch that is configured to switch between the CDT and the CDT based on an operating frequency of the optical transmitter.
Abstract:
The present invention relates to a method for assigning transmission resources (101) to communications between an access node (11) and a plurality of subscriber devices (41 to 46) coupled to a shared transmission medium.In accordance with an embodiment of the invention, the method comprises characterizing interference between respective ones of the plurality of subscriber devices over the shared transmission medium, grouping highly-interfering subscriber devices into respective interfering groups (G1, G2, G3, G4) based on the so-characterized interference, and assigning disjoint transmission time intervals to upstream communication from any one subscriber device of any one interfering group and to downstream communication towards any other subscriber device of the same interfering group.The present invention also relates to a resource controller.
Abstract:
The communication device includes a transmitter for transmitting communication signals through a transmitter output terminal, a receiver for receiving communication signals through a receiver input terminal, and a coupling unit for coupling the transmitter output terminal and the receiver input terminal to the shared transmission medium, and including a first filter for passing communication signals from/to the shared transmission medium within a first communication frequency range, and a second filter for passing communication signals from/to the shared transmission medium within a second communication frequency range disjoint from the first communication frequency range.