摘要:
An index for searching spoken documents having speech data and text meta-data is created by obtaining probabilities of occurrence of words and positional information of the words of the speech data and combining it with at least positional information of the words in the text meta-data. A single index can be created because the speech data and the text meta-data are treated the same and considered only different categories.
摘要:
A speech segment is indexed by identifying at least two alternative word sequences for the speech segment. For each word in the alternative sequences, information is placed in an entry for the word in the index. Speech units are eliminated from entries in the index based on a comparison of a probability that the word appears in the speech segment and a threshold value.
摘要:
Methods are disclosed for estimating language models such that the conditional likelihood of a class given a word string, which is very well correlated with classification accuracy, is maximized. The methods comprise tuning statistical language model parameters jointly for all classes such that a classifier discriminates between the correct class and the incorrect ones for a given training sentence or utterance. Specific embodiments of the present invention pertain to implementation of the rational function growth transform in the context of a discriminative training technique for n-gram classifiers.
摘要:
Methods are disclosed for estimating language models such that the conditional likelihood of a class given a word string, which is very well correlated with classification accuracy, is maximized. The methods comprise tuning statistical language model parameters jointly for all classes such that a classifier discriminates between the correct class and the incorrect ones for a given training sentence or utterance. Specific embodiments of the present invention pertain to implementation of the rational function growth transform in the context of a discriminative training technique for n-gram classifiers.
摘要:
A method and apparatus are provided for storing parameters of a deleted interpolation language model as parameters of a backoff language model. In particular, the parameters of the deleted interpolation language model are stored in the standard ARPA format. Under one embodiment, the deleted interpolation language model parameters are formed using fractional counts.
摘要:
A method and apparatus are provided for storing parameters of a deleted interpolation language model as parameters of a backoff language model. In particular, the parameters of the deleted interpolation language model are stored in the standard ARPA format. Under one embodiment, the deleted interpolation language model parameters are formed using fractional counts.
摘要:
A method of modeling a speech recognition system includes decoding a speech signal produced from a training text to produce a sequence of predicted speech units. The training text comprises a sequence of actual speech units that is used with the sequence of predicted speech units to form a confusion model. In further embodiments, the confusion model is used to decode a text to identify an error rate that would be expected if the speech recognition system decoded speech based on the text.
摘要:
The present invention involves using one or more statistical classifiers in order to perform task classification on natural language inputs. In another embodiment, the statistical classifiers can be used in conjunction with a rule-based classifier to perform task classification.
摘要:
A statistical classifier is constructed by estimating Naïve Bayes classifiers such that the conditional likelihood of class given word sequence is maximized. The classifier is constructed using a rational function growth transform implemented for Naïve Bayes classifiers. The estimation method tunes the model parameters jointly for all classes such that the classifier discriminates between the correct class and the incorrect ones for a given training sentence or utterance. Optional parameter smoothing and/or convergence speedup can be used to improve model performance. The classifier can be integrated into a speech utterance classification system or other natural language processing system.
摘要:
Methods are disclosed for estimating language models such that the conditional likelihood of a class given a word string, which is very well correlated with classification accuracy, is maximized. The methods comprise tuning statistical language model parameters jointly for all classes such that a classifier discriminates between the correct class and the incorrect ones for a given training sentence or utterance. Specific embodiments of the present invention pertain to implementation of the rational function growth transform in the context of a discriminative training technique for n-gram classifiers.