摘要:
Certain aspects of the present disclosure relate to a technique for managing contention-based uplink data transmissions. According to certain aspects, a base station may allocate a common contention-based resource to a plurality of user equipment (UEs). The plurality of UEs may utilize the contention-based resource to transmit uplink data without prior scheduling, which may result in transmission collisions. Certain aspects of the present disclosure provide a mechanism for determining which UE sent an uplink transmissions based on one or more transmission parameter signaled to the UEs.
摘要:
Certain aspects of the present disclosure relate to a technique for managing contention-based uplink data transmissions. According to certain aspects, a base station may allocate a common contention-based resource to a plurality of user equipment (UEs). The plurality of UEs may utilize the contention-based resource to transmit uplink data without prior scheduling, which may result in transmission collisions. Certain aspects of the present disclosure provide a mechanism for determining which UE sent an uplink transmissions based on one or more transmission parameter signaled to the UEs.
摘要:
Systems and methodologies are described that facilitate employing periodic closed loop power control corrections in a wireless communication environment. A periodic power control command can be sent over a downlink to control and/or correct an uplink power level employed by an access terminal. Each periodic power control command can be generated based upon an uplink periodic transmission sent from the access terminal. The periodic power control commands can be communicated via a Physical Downlink Control Channel (PDCCH) or in-band signaling. Moreover, access terminals can be grouped to enhance efficiency of downlink transfer of the periodic power control commands. The periodic power control commands can be halted upon access terminal uplink resources being deallocated. For instance, these resources can be deallocated after an inactivity period of the access terminal. Thereafter, the access terminal can initiate random access (e.g., leveraging open loop mechanisms) to resume periodic power control command transmission.
摘要:
Systems and methodologies are described that facilitate employing periodic closed loop power control corrections in a wireless communication environment. A periodic power control command can be sent over a downlink to control and/or correct an uplink power level employed by an access terminal. Each periodic power control command can be generated based upon an uplink periodic transmission sent from the access terminal. The periodic power control commands can be communicated via a Physical Downlink Control Channel (PDCCH) or in-band signaling. Moreover, access terminals can be grouped to enhance efficiency of downlink transfer of the periodic power control commands. The periodic power control commands can be halted upon access terminal uplink resources being deallocated. For instance, these resources can be deallocated after an inactivity period of the access terminal. Thereafter, the access terminal can initiate random access (e.g., leveraging open loop mechanisms) to resume periodic power control command transmission.
摘要:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus maintains at least one PHR trigger for triggering communication of a PHR for a plurality of component carriers. In addition, the apparatus communicates the PHR for at least one of the component carriers upon the at least one PHR trigger being triggered. The communicated PHR may be an aggregated PHR that includes power headroom information on the PCC and activated SCCs. The communicated PHR may further include an index associating information in the PHR to a corresponding component carrier. The communicated PHR may further include information indicating use of a PUSCH reference for computing the PHR for the at least one of the component carriers on which there is no PUSCH transmission.
摘要:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus maintains at least one PHR trigger for triggering communication of a PHR for a plurality of component carriers. In addition, the apparatus communicates the PHR for at least one of the component carriers upon the at least one PHR trigger being triggered. The communicated PHR may be an aggregated PHR that includes power headroom information on the PCC and activated SCCs. The communicated PHR may further include an index associating information in the PHR to a corresponding component carrier. The communicated PHR may further include information indicating use of a PUSCH reference for computing the PHR for the at least one of the component carriers on which there is no PUSCH transmission.
摘要:
A wireless communication network distributes resources for a Physical Downlink Control CHannel (PDCCH) over multiple carriers in accordance with a constraint that limits a number of blind decoding actions required by user equipment (UE). Distribution can entail segregating UE-specific and common search spaces to different monitored carriers. Distribution can entail segregating aggregation levels to different monitored carriers. Distribution can entail segregating a number of decoding candidates for a given aggregation level to different monitored carriers. The distribution can be orthogonal or non-orthogonal, and can be UE-based or per cell-based. The distribution can be static, semi-static or hop with time.
摘要:
Certain aspects of the present disclosure relate to a technique for releasing semi-persistent scheduling resources and for immediate entering an energy saving mode of operation at a user terminal.
摘要:
In accordance with one or more embodiments and corresponding disclosure thereof, various aspects are described in connection with providing shared scheduling request (SR) resources to devices for transmitting SRs. Identifiers related to the shared SR resources can be signaled to the devices along with indications of the shared SR resources in given time durations. Thus, devices can transmit an SR over shared SR resources related to one or more received identifiers for obtaining an uplink grant. This can decrease delay associated with receiving uplink grants since the device need not wait for dedicated SR resources before transmitting the SR. In addition, overhead can be decreased on control channels, as compared to signaling dedicated SR resources and/or uplink grants. Moreover, identifiers related to SR resources can correspond to a grouping of devices, such that a device can transmit over shared SR resources related to a group including the device.
摘要:
Certain aspects of the present disclosure relate to a technique for releasing semi-persistent scheduling resources and for immediate entering an energy saving mode of operation at a user terminal.