摘要:
A sensor coil for a fiber optic gyroscope. The coil is formed on a spool of carbon composite material or of another material whose coefficient of thermal expansion approximates that of the overlying windings of the glass optical fiber. The windings are potted in an adhesive material. Various bias effects are addressed by the coil design. The close matching of the thermal expansion characteristics of the spool and the fiber windings as well as proper selection of the coil potting material minimize the Shupe-like bias caused by thermal stress that would be otherwise exerted by a standard metallic spool. By careful selection of potting material (particularly its modulus of elasticity) vibration-induced bias, coil cracking, degradation of h-parameter and temperature-ramp bias sensitivity are also minimized.
摘要:
A spool for receiving a fiber optic sensor coil includes a single, substantially-planar mounting flange and a central hub. The coil can be directly wound upon the hub. The coil is mounted transverse to the plane of the mounting flange and is unconfined in that direction as the surface of the hub is substantially non-adhesive with respect to the inner layer of the coil. This allows axial coil expansion with increases in temperature without generating gyro bias errors. The device is also substantially free from vibration-induced bias errors due to the relatively high resonant frequency (vis a vis environmental vibration) of the integral spool-plus-coil structure.
摘要:
A sensor coil for a fiber optic gyroscope. At least one dummy layer forms an integral structure with, and shares the thermal expansion characteristics of, a potted coil comprising a plurality of layers of windings of a first optical fiber. In a gyroscope, the potted coil is arranged to receive the output of a source of optical energy as a pair of beams that counter-propagate therein and to provide the resultant interference pattern, as gyro output, to a detector. The dummy layer displaces layers or windings of the potted coil from regions likely to contribute to Shupe bias effects.
摘要:
A system for measuring changes in an environmental parameter such as displacement, velocity, acceleration, or pressure, includes a laser for providing a pulsed, coherent light signal, and an interferometer having a first and second optical legs of unequal optical path lengths. The signal is split into first and second beams that are directed into the first and second optical legs. Either a fixed mirror disposed on a frame or a moving mirror on one side of the proof mass reflects the first beam received at the end of the first optical leg. The frame also suspends a proof mass at opposite ends. An optical pick-off embodied in a movable mirror formed on the proof mass reflects the second beam received from the end of the second optical leg. The proof mass with mirror moves in response to changes in the value of the parameter to be measured. An optical coupler combines the first and second beams after they have been reflected back into their respective optical legs, producing an interference signal, which is detected by an optical detector. The detector generates an electronic signal, which is analyzed in a microcomputer. To compensate for gravity, the proof mass has an asymmetrical profile. As a velocity sensor for seismic measurements, its construction is guided by the mass of the proof mass and spring stiffness of the hinges. Represented mathematically, those terms are selected to minimize the acceleration and displacement components, leaving only the velocity component as a function of the ratio of mass to damping coefficients.
摘要:
A fiber optic particle motion accelerometer has a housing with a mid-section mounted therein such that the mid-section flexes in response to acceleration along a sensing axis. A proof mass is mounted to an outer edge of the mid-section. A first spiral-wound optical fiber coil is mounted to a first side of the mid-section and a second spiral-wound optical fiber coil is mounted to a second side of the mid-section. A first hinge is formed in the mid-section adjacent the mounting of the mid-section in the housing, and a second hinge is formed in the mid-section between the proof mass and the first and second fiber optic coils. The optical fiber coils are included in an interferometer such that acceleration along the sensing axis produces a phase difference between optical signals propagating in the optical fiber coils.
摘要:
A multisensor includes a ring-like piezoelectric drive. The ring, which may comprise a closed configuration formed of straight ring segments, surrounds a rotor assembly formed of a pair of rotors, each having a central hub. Vanes extend radially from the central hubs of the rotors to the inner surface of the ring and are fixed to the ring adjacent the intersections of the substantially-straight ring segments. The ring is formed of a laminate of layers of piezoelectric material. Adjacent layers are of opposite piezoelectric polarity whereby an a.c. signal drives the alternating expansions and contractions of pairs of laminated layers.
摘要:
To minimize the uncompensated part of the Shupe error, a one or more continuous coils (28, 44, 46) thermally stable material is added to a composite coil assembly (20) to dominate the composite in terms of thermal expansion and elastic modulus. The thermally stable material includes a plurality of continuously coiled fibers (28, 44, 46) selected from a material group which possesses a high modulus and a low coefficient of thermal expansion. The preferred fiber is formed from a carbon-graphite material which is selectively wound within the optical fibers (22) in the coil assembly and/or is wound about the interior and exterior circumferences of the coil assembly.
摘要:
A sensor for measuring angular rotation rates about three orthogonal axes is based upon sensing Coriolis acceleration forces with a pair of nearly-identical rotors coupled coaxialy by a torsion spring and counter-oscillating in rotation. The torsional oscillator is mounted within a case by means of radial vanes, each comprisig two piezoelectric ceramic plates bonded to a thin metal core responsive to drive signals and providing rotational vibration isolation. The arms of the rotors are designed as piezoelectric open loop accelerometers. Electrodes of selected configurations are mounted to the outer surfaces of the planar members to collect charge indicative of Coriolis accelerations proportional to the angular rotations about the orthogonal axes.
摘要:
A three axis inertial measurement unit is shown having a low inertia mechanical oscillator formed from two platforms counterbalanced against each other. Each platform is dithered at its natural frequency about a single torsional axis. A plurality of accelerators are mounted upon at least one of the counterbalanced platforms with each accelerometer having at least an input axis mounted at a predetermined angle to the torsional axis and to the platform. Each platform has a three legged, Y-shaped mounting member with a rotor member positioned between the legs of the mounting member. Web members which form the legs of the mounting member join the rotor member to the Y-shaped mounting member. Additionally, driving webs are mounted on each side of the web members for further joining the mounting member to the rotary member.
摘要:
A system for measuring changes in an environmental parameter, such as velocity or pressure, includes an optical signal source for providing a coherent light signal, and an interferometer having a first and second optical legs of unequal optical path lengths. The signal is split into first and second beams that are respectively directed into the first and second optical legs of the interferometer. A fixed mirror reflects the first beam received at the end of the first optical leg. An optical pick-off includes a movable mirror, positioned to reflect the second beam received from the end of the second optical leg. The movable mirror is movable in response to changes in the-value of the parameter to be measured. An optical coupler combines the first and second beams after they have been reflected back into their respective optical legs, producing an interference signal, which is detected by an optical detector. The detector generates an electronic signal having a value indicative of the value of the interference signal. The electronic signal is analyzed to correlate its value to changes in the value of the environmental parameter to be measured.