Abstract:
A force-sensitive touch sensor detects location and force of touches applied to the sensor. Movement of an object touching the force-sensitive touch sensor correlates to movement of a pointer on a display device. Varying levels of force applied to the force-sensitive touch sensor are interpreted as different commands. Objects displayed on the display device can be manipulated by a combination of gestures across a surface of the force-sensitive touch sensor and changes in force applied to the force-sensitive touch sensor.
Abstract:
Embodiments provide techniques for updating pixels of an electrophoretic display through computational modeling of a current state of each pixel. A model buffer may store data for a modeled current state of each pixel in a display, providing a prediction of a current color state for each pixel based on voltages previously applied to the pixel. Upon receiving a frame to be displayed, including a target state for each pixel, embodiments determine which of a set of voltages (e.g., positive, negative, or neural/zero voltages) optimally alters the state of the pixel to be as close as possible to the target state. These voltage(s) may be applied to each pixel in an iterative manner, with each voltage determined based on the current modeled state of the pixel.
Abstract:
Embodiments provide techniques for updating pixels of an electrophoretic display through computational modeling of a current state of each pixel. A model buffer may store data for a modeled current state of each pixel in a display, providing a prediction of a current color state for each pixel based on voltages previously applied to the pixel. Upon receiving a frame to be displayed, including a target state for each pixel, embodiments determine which of a set of voltages (e.g., positive, negative, or neural/zero voltages) optimally alters the state of the pixel to be as close as possible to the target state. These voltage(s) may be applied to each pixel in an iterative manner, with each voltage determined based on the current modeled state of the pixel.
Abstract:
A force-sensitive touch sensor detects location and force of touches applied to the sensor. Movement of an object touching the force-sensitive touch sensor correlates to movement of a pointer on a display device. Varying levels of force applied to the force-sensitive touch sensor are interpreted as different commands. Objects displayed on the display device can be manipulated by a combination of gestures across a surface of the force-sensitive touch sensor and changes in force applied to the force-sensitive touch sensor.
Abstract:
Techniques for operating electronic paper displays of respective electronic devices are described. One set of techniques described below enhances user experience by utilizing multiple different waveform and/or display-update modes when rendering content on these displays. Another set of techniques are able to render lines on electronic paper displays having variable and arbitrary darkness, despite the restricted color depth inherent in these displays. In addition, this disclosure describes techniques for utilizing supersampling to select which shades to render on an electronic paper display of an electronic device. In still other implementations, the techniques described herein allocate a predefined frame rate of an electronic paper display between multiple different application components requesting to update the display, resulting smooth animation and relatively high-frame updates.