Abstract:
Features are disclosed for processing and interpreting natural language, such as interpretations of user utterances, in multi-turn dialog interactions. Context information regarding interpretations of user utterances and system responses to the user utterances can be maintained. Subsequent user utterances can be interpreted using the context information, rather than being interpreted without context. In some cases, interpretations of subsequent user utterances can be merged with interpretations of prior user utterances using a rule-based framework. Rules may be defined to determine which interpretations may be merged and under what circumstances they may be merged.
Abstract:
Features are disclosed for performing functions in response to user requests. Natural Language Understanding (“NLU”) processing may be performed to generate command data that represents a subject of an utterance. The command data may be sent to an application that causes presentation of first output content in a first modality at a first time in response to receiving the command data, and generates second output content in a second modality different from the first modality, wherein the second output content is associated with the first output content. The second output content may be presented in the second modality at a second time subsequent to the first time.
Abstract:
Features are disclosed for processing and interpreting natural language, such as interpretations of user utterances, in multi-turn dialog interactions. Context information regarding interpretations of user utterances and system responses to the user utterances can be maintained. Subsequent user utterances can be interpreted using the context information, rather than being interpreted without context. In some cases, interpretations of subsequent user utterances can be merged with interpretations of prior user utterances using a rule-based framework. Rules may be defined to determine which interpretations may be merged and under what circumstances they may be merged.
Abstract:
Features are disclosed for performing functions in response to user requests based on contextual data regarding prior user requests. Users may engage in conversations with a computing device in order to initiate some function or obtain some information. A dialog manager may manage the conversations and store contextual data regarding one or more of the conversations. Processing and responding to subsequent conversations may benefit from the previously stored contextual data by, e.g., reducing the amount of information that a user must provide if the user has already provided the information in the context of a prior conversation. Additional information associated with performing functions responsive to user requests may be shared among applications, further improving efficiency and enhancing the user experience.
Abstract:
Features are disclosed for performing functions in response to user requests based on contextual data regarding prior user requests. Users may engage in conversations with a computing device in order to initiate some function or obtain some information. A dialog manager may manage the conversations and store contextual data regarding one or more of the conversations. Processing and responding to subsequent conversations may benefit from the previously stored contextual data by, e.g., reducing the amount of information that a user must provide if the user has already provided the information in the context of a prior conversation. Additional information associated with performing functions responsive to user requests may be shared among applications, further improving efficiency and enhancing the user experience.
Abstract:
Features are disclosed for performing functions in response to user requests based on contextual data regarding prior user requests. Users may engage in conversations with a computing device in order to initiate some function or obtain some information. A dialog manager may manage the conversations and store contextual data regarding one or more of the conversations. Processing and responding to subsequent conversations may benefit from the previously stored contextual data by, e.g., reducing the amount of information that a user must provide if the user has already provided the information in the context of a prior conversation. Additional information associated with performing functions responsive to user requests may be shared among applications, further improving efficiency and enhancing the user experience.
Abstract:
Dialog visualizations are created to enable analysis of interactions between a user and a speech recognition system used to implement user commands. Spoken commands from the user may be classified, along with system responses to the spoken commands, to enable aggregation of communication exchanges that form dialog. This data may then be used to create a dialog visualization. The dialog visualization may enable an analyst to visually explore different branches of the interactions represented in the dialog visualization. The dialog visualization may show a trajectory of the dialog, which may be explored in an interactive manner by the analyst.
Abstract:
Features are disclosed for performing functions in response to user requests based on contextual data regarding prior user requests. Users may engage in conversations with a computing device in order to initiate some function or obtain some information. A dialog manager may manage the conversations and store contextual data regarding one or more of the conversations. Processing and responding to subsequent conversations may benefit from the previously stored contextual data by, e.g., reducing the amount of information that a user must provide if the user has already provided the information in the context of a prior conversation. Additional information associated with performing functions responsive to user requests may be shared among applications, further improving efficiency and enhancing the user experience.