Abstract:
Techniques are described for performing automated predictions of program execution capacity or other capacity of computing-related hardware resources that will be used to execute software programs in the future, such as for a group of computing nodes that execute one or more programs for a user. The predictions that are performed may in at least some situations be based on historical data regarding corresponding prior actual usage of execution-related capacity (e.g., for one or more prior years), and may include long-term predictions for particular future time periods that are multiple months or years into the future. In addition, the predictions of the execution-related capacity for particular future time periods may be used in various manners, including to manage execution-related capacity at or before those future time periods, such as to prepare sufficient execution-related capacity to be available at those future time periods.
Abstract:
Techniques are described for performing automated predictions of program execution capacity or other capacity of computing-related hardware resources that will be used to execute software programs in the future, such as for a group of computing nodes that execute one or more programs for a user. The predictions that are performed may in at least some situations be based on historical data regarding corresponding prior actual usage of execution-related capacity (e.g., for one or more prior years), and may include long-term predictions for particular future time periods that are multiple months or years into the future. In addition, the predictions of the execution-related capacity for particular future time periods may be used in various manners, including to manage execution-related capacity at or before those future time periods, such as to prepare sufficient execution-related capacity to be available at those future time periods.
Abstract:
Techniques are described for performing automated predictions of program execution capacity or other capacity of computing-related hardware resources that will be used to execute software programs in the future, such as for a group of computing nodes that execute one or more programs for a user. The predictions that are performed may in at least some situations be based on historical data regarding corresponding prior actual usage of execution-related capacity (e.g., for one or more prior years), and may include long-term predictions for particular future time periods that are multiple months or years into the future. In addition, the predictions of the execution-related capacity for particular future time periods may be used in various manners, including to manage execution-related capacity at or before those future time periods, such as to prepare sufficient execution-related capacity to be available at those future time periods.
Abstract:
Techniques are described for managing program execution capacity or other capacity of computing-related hardware resources used to execute software programs, such as for a group of computing nodes that is in use executing one or more programs for a user. Dynamic modifications to the program execution capacity of the group may include adding or removing computing nodes, such as in response to automated determinations that previously specified triggers are currently satisfied, and may be automatically governed at particular times based on automatically generated predictions of program execution capacity that will be used at those times by the group, such as to verify that requested dynamic execution capacity modifications at a time are within the predicted execution capacity values for that time. In some situations, the techniques are used in conjunction with a fee-based program execution service that executes multiple programs on behalf of multiple users of the service.