摘要:
One embodiment of the present invention provides a system that determines a feasible cell placement for an integrated circuit design. During operation, the system receives an input cell placement, which is typically determined using a quadratic placement technique. Next, the system receives a set of regions within the integrated circuit design. Each region has a capacity constraint which specifies an upper limit on the total cell area that can be placed within the region. The system then generates a bi-partite graph which comprises instance vertices, region vertices, and edges. An instance vertex is associated with a cell instance, a region vertex is associated with a region, and each edge is incident on an instance vertex and a region vertex. Each edge is assigned a cost that indicates the cost of placing the associated cell instance in the associated region. Next, the system associates edges with shadow edges. Note that an edge and an associated shadow edge are incident to the same instance vertex. The system then ranks the edges using the costs of the shadow edges. Next, the system selects a set of edges using the edge rankings. Finally, the system determines the feasible cell placement using the set of edges.
摘要:
A differential sinusoidal signal pair is generated on an integrated circuit (IC). The differential sinusoidal signal pair is distributed to clock receiver circuits, which may be differential amplifiers. The clock receiver circuits receive the differential sinusoidal signal pair and convert the differential sinusoidal pair to local clock signals. Power consumption and noise generation are reduced as compared to conventional clock signal distribution arrangements.
摘要:
An electrical wiring structure and method of designing thereof. The method identifies at least one wire pair having a first wire and a second wire. The second wire is already tri-stated or can be tri-stated. The wire pair may have a same-direction switching probability per clock cycle that is no less than a predetermined or user-selected minimum same-direction switching probability. Alternatively, the wire pair may have an opposite-direction switching probability per clock cycle that is no less than a predetermined or user-selected minimum opposite-direction switching probability. The first wire and the second wire satisfy at least one mathematical relationship involving: a spacing between the first wire and the second wire; and a common run length of the first wire and the second wire.
摘要:
An electrical wiring structure and a computer system for designing the electrical wiring structure. The electrical wiring structure includes a wire pair. The wire pair includes a first wire and a second wire. The second wire is slated for being tri-stated. The wire pair has a same-direction switching probability φSD per clock cycle that is no less than a pre-selected minimum same-direction switching probability φSD,MIN or has an opposite-direction switching probability φOD per clock cycle that is no less than a pre-selected minimum opposite-direction switching probability φOD,MIN. The first wire and the second wire satisfies at least one mathematical relationship involving LCOMMON and WSPACING, where WSPACING is defined as a spacing between the first wire and the second wire, and LCOMMON is defined as a common run length of the first wire and the second wire.
摘要:
A method is provided for computing signal and switching probabilities at an output of a logic circuit in a network having multiple logic circuits. The method for computing the signal and switching probabilities includes steps of creating a truth table for a logic circuit where the truth table has entries respectively corresponding to signals at inputs of the logic circuit, choosing in sequence one of entries each representing switching of a signal at the output of the circuit, determining whether a signal at an input corresponding to the chosen entry is at logic high, assigning an event probability representing that the signal is at logic high, and accumulating event probabilities respectively assigned to signals at inputs corresponding to the chosen entries to produce the signal probability at the output of the circuit.