Apparatus and method for spoken language understanding by using semantic role labeling
    1.
    发明授权
    Apparatus and method for spoken language understanding by using semantic role labeling 有权
    通过使用语义角色标注来进行口语理解的装置和方法

    公开(公告)号:US07742911B2

    公开(公告)日:2010-06-22

    申请号:US11095299

    申请日:2005-03-31

    IPC分类号: G06F17/28

    摘要: An apparatus and a method are provided for using semantic role labeling for spoken language understanding. A received utterance semantically parsed by semantic role labeling. A predicate or at least one argument is extracted from the semantically parsed utterance. An intent is estimated based on the predicate or the at least one argument. In another aspect, a method is provided for training a spoken language dialog system that uses semantic role labeling. An expert is provided with a group of predicate/argument pairs. Ones of the predicate/argument pairs are selected as intents. Ones of the arguments are selected as named entities. Mappings from the arguments to frame slots are designed.

    摘要翻译: 提供了一种使用语义角色标识来进行语言理解的装置和方法。 被语义角色标注语义解析的语音接收语句。 从语义解析的话语中提取谓词或至少一个参数。 根据谓词或至少一个参数估计意图。 另一方面,提供了一种用于训练使用语义角色标注的口语对话系统的方法。 专家提供了一组谓词/参数对。 谓词/参数对的一部分被选为意图。 参数的一部分被选为命名实体。 从框架插槽的参数映射被设计。

    System and method of semi-supervised learning for spoken language understanding using semantic role labeling
    2.
    发明授权
    System and method of semi-supervised learning for spoken language understanding using semantic role labeling 有权
    使用语义角色标签进行口语理解的半监督学习的系统和方法

    公开(公告)号:US08321220B1

    公开(公告)日:2012-11-27

    申请号:US11290859

    申请日:2005-11-30

    IPC分类号: G10L15/00

    CPC分类号: G10L15/063 G09B19/04

    摘要: A system and method are disclosed for providing semi-supervised learning for a spoken language understanding module using semantic role labeling. The method embodiment relates to a method of generating a spoken language understanding module. Steps in the method comprise selecting at least one predicate/argument pair as an intent from a set of the most frequent predicate/argument pairs for a domain, labeling training data using mapping rules associated with the selected at least one predicate/argument pair, training a call-type classification model using the labeled training data, re-labeling the training data using the call-type classification model and iteratively several of the above steps until training set labels converge.

    摘要翻译: 公开了一种用于为使用语义角色标记的口语理解模块提供半监督学习的系统和方法。 该方法实施例涉及一种产生口头语言理解模块的方法。 该方法中的步骤包括从一个域的最频繁谓词/参数对集合中选择至少一个谓词/参数对作为意图,使用与所选择的至少一个谓词/参数对相关联的映射规则来标记训练数据,训练 使用标记的训练数据的呼叫类型分类模型,使用呼叫类型分类模型重新标记训练数据,并且迭代地执行上述几个步骤,直到训练集标签收敛。

    System and method for using semantic and syntactic graphs for utterance classification
    3.
    发明授权
    System and method for using semantic and syntactic graphs for utterance classification 有权
    语义和句法图用于语音分类的系统和方法

    公开(公告)号:US08700404B1

    公开(公告)日:2014-04-15

    申请号:US11212266

    申请日:2005-08-27

    摘要: Disclosed herein is a system, method and computer readable medium storing instructions related to semantic and syntactic information in a language understanding system. The method embodiment of the invention is a method for classifying utterances during a natural language dialog between a human and a computing device. The method comprises receiving a user utterance; generating a semantic and syntactic graph associated with the received utterance, extracting all n-grams as features from the generated semantic and syntactic graph and classifying the utterance. Classifying the utterance may be performed any number of ways such as using the extracted n-grams, a syntactic and semantic graphs or writing rules.

    摘要翻译: 本文公开了一种在语言理解系统中存储与语义和句法信息相关的指令的系统,方法和计算机可读介质。 本发明的方法实施例是一种在人与计算设备之间的自然语言对话中对话语进行分类的方法。 该方法包括接收用户话语; 生成与接收到的话语相关联的语义和句法图,从生成的语义和句法图中提取所有n-gram作为特征,并对话语进行分类。 可以通过使用提取的n-gram,语法和语义图形或书写规则等任何方式来执行对话语的分类。

    System and method of providing an automated data-collection in spoken dialog systems
    4.
    发明授权
    System and method of providing an automated data-collection in spoken dialog systems 有权
    在口头对话系统中提供自动数据收集的系统和方法

    公开(公告)号:US08185399B2

    公开(公告)日:2012-05-22

    申请号:US11029798

    申请日:2005-01-05

    IPC分类号: G10L21/00 G10L19/00 G06F17/27

    摘要: The invention relates to a system and method for gathering data for use in a spoken dialog system. An aspect of the invention is generally referred to as an automated hidden human that performs data collection automatically at the beginning of a conversation with a user in a spoken dialog system. The method comprises presenting an initial prompt to a user, recognizing a received user utterance using an automatic speech recognition engine and classifying the recognized user utterance using a spoken language understanding module. If the recognized user utterance is not understood or classifiable to a predetermined acceptance threshold, then the method re-prompts the user. If the recognized user utterance is not classifiable to a predetermined rejection threshold, then the method transfers the user to a human as this may imply a task-specific utterance. The received and classified user utterance is then used for training the spoken dialog system.

    摘要翻译: 本发明涉及一种用于收集在口头对话系统中使用的数据的系统和方法。 本发明的一个方面通常被称为在与对话系统中的用户的对话开始时自动执行数据收集的自动隐藏人。 该方法包括向用户呈现初始提示,使用自动语音识别引擎识别接收到的用户话语,并使用口语理解模块对所识别的用户话语进行分类。 如果识别的用户话语不能被理解或可被分类到预定的接受阈值,则该方法重新提示用户。 如果识别的用户话语不能被分类为预定的拒绝阈值,则该方法将用户转移给人,因为这可能意味着任务特定的话语。 然后,接收和分类的用户话语用于训练口语对话系统。

    Active labeling for spoken language understanding
    5.
    发明授权
    Active labeling for spoken language understanding 有权
    积极标注口语理解

    公开(公告)号:US07949525B2

    公开(公告)日:2011-05-24

    申请号:US12485103

    申请日:2009-06-16

    IPC分类号: G10L15/00 G10L15/06 G10L15/20

    CPC分类号: G10L15/1822

    摘要: A spoken language understanding method and system are provided. The method includes classifying a set of labeled candidate utterances based on a previously trained classifier, generating classification types for each candidate utterance, receiving confidence scores for the classification types from the trained classifier, sorting the classified utterances based on an analysis of the confidence score of each candidate utterance compared to a respective label of the candidate utterance, and rechecking candidate utterances according to the analysis. The system includes modules configured to control a processor in the system to perform the steps of the method.

    摘要翻译: 提供口语理解方法和系统。 该方法包括基于先前训练的分类器对一组标记的候选话语进行分类,为每个候选语音生成分类类型,从训练分类器接收分类类型的置信度分数, 每个候选话语与候选话语的相应标签相比较,并且根据分析重新检查候选话语。 该系统包括被配置为控制系统中的处理器以执行该方法的步骤的模块。

    SYSTEM AND METHOD OF PROVIDING AN AUTOMATED DATA-COLLECTION IN SPOKEN DIALOG SYSTEMS
    7.
    发明申请
    SYSTEM AND METHOD OF PROVIDING AN AUTOMATED DATA-COLLECTION IN SPOKEN DIALOG SYSTEMS 有权
    系统和方法提供自动数据收集在风扇对话系统

    公开(公告)号:US20120232898A1

    公开(公告)日:2012-09-13

    申请号:US13476150

    申请日:2012-05-21

    IPC分类号: G10L15/26 G10L15/04

    摘要: The invention relates to a system and method for gathering data for use in a spoken dialog system. An aspect of the invention is generally referred to as an automated hidden human that performs data collection automatically at the beginning of a conversation with a user in a spoken dialog system. The method comprises presenting an initial prompt to a user, recognizing a received user utterance using an automatic speech recognition engine and classifying the recognized user utterance using a spoken language understanding module. If the recognized user utterance is not understood or classifiable to a predetermined acceptance threshold, then the method re-prompts the user. If the recognized user utterance is not classifiable to a predetermined rejection threshold, then the method transfers the user to a human as this may imply a task-specific utterance. The received and classified user utterance is then used for training the spoken dialog system.

    摘要翻译: 本发明涉及一种用于收集在口头对话系统中使用的数据的系统和方法。 本发明的一个方面通常被称为在与对话系统中的用户的对话开始时自动执行数据收集的自动隐藏人。 该方法包括向用户呈现初始提示,使用自动语音识别引擎识别接收到的用户话语,并使用口语理解模块对所识别的用户话语进行分类。 如果识别的用户话语不能被理解或可被分类到预定的接受阈值,则该方法重新提示用户。 如果识别的用户话语不能被分类为预定的拒绝阈值,则该方法将用户转移给人,因为这可能意味着任务特定的话语。 然后,接收和分类的用户话语用于训练口语对话系统。

    ACTIVE LABELING FOR SPOKEN LANGUAGE UNDERSTANDING
    9.
    发明申请
    ACTIVE LABELING FOR SPOKEN LANGUAGE UNDERSTANDING 有权
    主动标签语言语言理解

    公开(公告)号:US20090254344A1

    公开(公告)日:2009-10-08

    申请号:US12485103

    申请日:2009-06-16

    IPC分类号: G10L15/04

    CPC分类号: G10L15/1822

    摘要: A spoken language understanding method and system are provided. The method includes classifying a set of labeled candidate utterances based on a previously trained classifier, generating classification types for each candidate utterance, receiving confidence scores for the classification types from the trained classifier, sorting the classified utterances based on an analysis of the confidence score of each candidate utterance compared to a respective label of the candidate utterance, and rechecking candidate utterances according to the analysis. The system includes modules configured to control a processor in the system to perform the steps of the method.

    摘要翻译: 提供口语理解方法和系统。 该方法包括基于先前训练的分类器对一组标记的候选话语进行分类,为每个候选语音生成分类类型,从训练分类器接收分类类型的置信度分数, 每个候选话语与候选话语的相应标签相比较,并且根据分析重新检查候选话语。 该系统包括被配置为控制系统中的处理器以执行该方法的步骤的模块。

    Active labeling for spoken language understanding
    10.
    发明授权
    Active labeling for spoken language understanding 有权
    积极标注口语理解

    公开(公告)号:US07562017B1

    公开(公告)日:2009-07-14

    申请号:US11862656

    申请日:2007-09-27

    IPC分类号: G06F17/21 G06F17/27 G10L15/08

    CPC分类号: G10L15/1822

    摘要: An active labeling process is provided that aims to minimize the number of utterances to be checked again by automatically selecting the ones that are likely to be erroneous or inconsistent with the previously labeled examples. In one embodiment, the errors and inconsistencies are identified based on the confidences obtained from a previously trained classifier model. In a second embodiment, the errors and inconsistencies are identified based on an unsupervised learning process. In both embodiments, the active labeling process is not dependent upon the particular classifier model.

    摘要翻译: 提供了一种主动标注过程,其目的是通过自动选择可能是错误的或与先前标记的示例不一致的那些来最小化要再次检查的话语的数量。 在一个实施例中,基于从先前训练的分类器模型获得的信心来识别误差和不一致性。 在第二实施例中,基于无监督的学习过程来识别错误和不一致。 在两个实施方案中,活性标记过程不依赖于特定的分类器模型。