摘要:
This invention relates to supervised or unsupervised classification of biological datasets. Specifically, the invention relates to the use of Graph Embedding as a method of reducing dimensionality thereby improving supervised classification of classes, both conventional and new ones.
摘要:
This invention relates to supervised or unsupervised classification of biological datasets. Specifically, the invention relates to the use of Graph Embedding as a method of reducing dimensionality thereby improving supervised classification of classes, both conventional and new ones.
摘要:
The present invention relates to a method and system for detecting biologically relevant structures in a hierarchical fashion, beginning at a low-resolution and proceeding to higher levels of resolution. The present invention also provides probabilistic pairwise Markov models (PPMMs) to classify these relevant structures. The invention is directed to a novel classification approach which weighs the importance of these structures. The present invention also provides a fast, efficient computer-aided detection/diagnosis (CAD) system capable of rapidly processing medical images (i.e. high throughput). The computer-aided detection/diagnosis (CAD) system of the present invention allows for rapid analysis of medical images the improving the ability to effectively detect, diagnose, and treat certain diseases.
摘要:
The present invention relates to a method and system for detecting biologically relevant structures in a hierarchical fashion, beginning at a low-resolution and proceeding to higher levels of resolution. The present invention also provides probabilistic pairwise Markov models (PPMMs) to classify these relevant structures. The invention is directed to a novel classification approach which weighs the importance of these structures. The present invention also provides a fast, efficient computer-aided detection/diagnosis (CAD) system capable of rapidly processing medical images (i.e. high throughput). The computer-aided detection/diagnosis (CAD) system of the present invention allows for rapid analysis of medical images the improving the ability to effectively detect, diagnose, and treat certain diseases.
摘要:
This invention relates to computer-assisted diagnostics and classification of prostate cancer. Specifically, the invention relates to segmentation of the prostate boundary on MRI images, cancer detection using multimodal multi-protocol MR data; and their integration for a computer-aided diagnosis and classification system for prostate cancer.
摘要:
This invention relates to computer-assisted diagnostics and classification of prostate cancer. Specifically, the invention relates to segmentation of the prostate boundary on MRI images, cancer detection using multimodal multi-protocol MR data; and their integration for a computer-aided diagnosis and classification system for prostate cancer.
摘要:
A method and apparatus for classifying possibly malignant lesions from sets of DCE-MRI images includes receiving a set of MRI slice images obtained at respectively different times, where each slice image includes voxels representative of at least one region of interest (ROI). The images are processed to determine the boundaries of the ROIs and the voxels within the identified boundaries in corresponding regions of the images from each time period are processed to extract kinetic texture features. The kinetic texture features are then used in a classification process which classifies the ROIs as malignant or benign. The malignant lesions are further classified to separate TN lesions from non-TN lesions.
摘要:
A method and apparatus for classifying possibly malignant lesions from sets of DCE-MRI images includes receiving a set of MRI slice images obtained at respectively different times, where each slice image includes voxels representative of at least one region of interest (ROI). The images are processed to determine the boundaries of the ROIs and the voxels within the identified boundaries in corresponding regions of the images from each time period are processed to extract kinetic texture features. The kinetic texture features are then used in a classification process which classifies the ROIs as malignant or benign. The malignant lesions are further classified to separate TN lesions from non-TN lesions.
摘要:
A method for classifying a possible cancer from a magnetic resonance spectrographic (MRS) dataset includes extracting at least one feature from the MRS dataset as being identified with the possible cancer and embedding the extracted feature into a low dimensional space to form an embedded space. The method then clusters the embedded space into clusters representing a plurality of predetermined classes and spectrally decomposing the clusters to identify substantially significant independent metabolic signatures. The method then classifies the possible cancer as belong to one of at least two cancer classes based on the identified independent metabolic signatures.
摘要:
This invention relates to medical image registration. Specifically, the invention relates to a combined feature ensemble mutual information (COFEMI) for robust inter-modal, inter-protocol image registration.