摘要:
A perpendicular magnetic recording system and medium has a multilayered recording layer that includes an exchange-spring structure and a ferromagnetic lateral coupling layer (LCL). The exchange-spring structure is made up of two ferromagnetically exchange-coupled magnetic layers (MAG1 and MAG2), each with perpendicular magnetic anisotropy. MAG1 and MAG2 may have a coupling layer (CL) located between them that permits ferromagnetic exchange coupling of MAG1 with MAG2. The LCL is located either above or below MAG1 and in direct contact with MAG1 and mediates an effective intergranular exchange coupling in MAG1. The ferromagnetic alloy in the LCL has significantly greater intergranular exchange coupling than the ferromagnetic alloy in MAG1, which typically will include segregants such as oxides. The LCL is preferably free of oxides or other non-metallic segregants, which would tend to reduce intergranular exchange coupling in the LCL. Because the LCL grain boundaries overlay the boundaries of the generally segregated and decoupled grains of MAG1, and the LCL and MAG1 grains are strongly coupled perpendicularly, the LCL introduces an effective intergranular exchange coupling in the MAG1.
摘要:
A perpendicular magnetic recording system uses an exchange-spring type of perpendicular magnetic recording medium. The medium has a recording layer (RL) that includes a lower media layer (ML) and a multilayer exchange-spring layer (ESL) above the ML. The high anisotropy field (high-Hk) lower ML and the multilayer ESL are exchange-coupled across a coupling layer. The multilayer ESL has at least two ESLs separated by a coupling layer, with each of the ESLs having an Hk substantially less than the Hk of the ML. The exchange-spring structure with the multilayer ESL takes advantage of the fact that the write field magnitude and write field gradient vary as a function of distance from the write pole. The thicknesses and Hk values of each of the ESLs can be independently varied to optimize the overall recording performance of the medium.
摘要翻译:垂直磁记录系统使用交换弹簧式垂直磁记录介质。 介质具有记录层(RL),其包括ML上方的下介质层(ML)和多层交换弹簧层(ESL)。 较高的各向异性场(high-H k k N)较低的ML和多层ESL在耦合层之间交换耦合。 多层ESL具有由耦合层隔开的至少两个ESL,其中每个ESL具有基本上小于ML的H k k N。 具有多层ESL的交换弹簧结构利用写入场幅度和写场梯度随着与写入极的距离的函数而变化的优点。 可以独立地改变每个ESL的厚度和厚度值,以优化介质的整体记录性能。
摘要:
A high performance perpendicular media with optimal exchange coupling between grains has improved thermal stability, writeability, and signal-to-noise ratio in a selected range of allowable intergranular exchange between the grains for high performing media. The writeability and byte error rate of a TaOx media are demonstrated to be substantially better than that of other designs.
摘要翻译:具有晶粒之间的最佳交换耦合的高性能垂直介质在高性能介质的晶粒之间允许的晶间交换的选定范围内提高了热稳定性,可写性和信噪比。 证明了TaO x x介质的可写性和字节错误率显着优于其他设计。
摘要:
A perpendicular magnetic recording system and medium has a multilayered recording layer that includes an exchange-spring structure and a ferromagnetic lateral coupling layer (LCL). The exchange-spring structure is made up of two ferromagnetically exchange-coupled magnetic layers (MAG1 and MAG2), each with perpendicular magnetic anisotropy. MAG1 and MAG2 are either in direct contact with one another or have a coupling layer (CL) located between them. The LCL is located in direct contact with MAG2 and mediates intergranular exchange coupling in MAG2. The ferromagnetic alloy in the LCL has significantly greater intergranular exchange coupling than the ferromagnetic alloy in MAG2, which typically will include segregants such as oxides. The LCL is preferably free of oxides or other segregants, which would tend to reduce intergranular exchange coupling in the LCL. Because the LCL grain boundaries overlay the boundaries of the generally segregated and decoupled grains of MAG2, and the LCL and MAG2 grains are strongly coupled perpendicularly, the LCL introduces an effective intergranular exchange coupling in the MAG2.
摘要:
A magnetic write head having independent trailing and side magnetic shields. The side shields and trailing shields are independently of one another so that they can have throat heights that are different from one another. This advantageously allows the magnetic potential between the write pole and side shields to be controlled independently of one another without relying on the side gap and trailing gap thicknesses. Furthermore, magnetic performance of the write head can be improved because the side shields can be constructed with varying tapered throat heights, while the throat height of the trailing shield can remain constant.
摘要:
A write head for perpendicular magnetic recording having a write pole and first and second return poles. The write head can include a first magnetomotive force source for delivering a magnetomotive force to the first return pole and the write pole and a second magnetomotive force source for delivering magnetomotive force to the second return pole and the write pole. The first and second magnetomotive force sources can be operated independently of one another so that different relative amounts of magnetomotive force can be applied to the first and second return poles. A trailing magnetic shield can be connected with one of the return poles, such as the second return poles, and the variation in magnetomotive force can be used to increase the amount of flux flowing through the trailing shield when increased field gradient is desired (such as when writing a transition), and to decrease the amount of flux through the trailing shield when decreased field gradient and increased write field are desired (such as when writing a long magnetic section on a magnetic medium).