摘要:
A write head for perpendicular magnetic recording having a write pole and first and second return poles. The write head can include a first magnetomotive force source for delivering a magnetomotive force to the first return pole and the write pole and a second magnetomotive force source for delivering magnetomotive force to the second return pole and the write pole. The first and second magnetomotive force sources can be operated independently of one another so that different relative amounts of magnetomotive force can be applied to the first and second return poles. A trailing magnetic shield can be connected with one of the return poles, such as the second return poles, and the variation in magnetomotive force can be used to increase the amount of flux flowing through the trailing shield when increased field gradient is desired (such as when writing a transition), and to decrease the amount of flux through the trailing shield when decreased field gradient and increased write field are desired (such as when writing a long magnetic section on a magnetic medium).
摘要:
A magnetic write pole structure that is configured to greatly simplify the manufacture of a perpendicular magnetic write head. The write head has a magnetic yoke that is oriented along a plane that is perpendicular to the direction of the data track. This allows the entire yoke to be formed in a single electroplating step, rather than being built up in several plated layers. The yoke can also be formed with magnetic side shields, or with a trailing or wrap around shield, which can be integral with the rest of the yoke and can be advantageously formed in the same, single electroplating step.
摘要:
A magnetic write pole structure that is configured to greatly simplify the manufacture of a perpendicular magnetic write head. The write head has a magnetic yoke that is oriented along a plane that is perpendicular to the direction of the data track. This allows the entire yoke to be formed in a single electroplating step, rather than being built up in several plated layers. The yoke can also be formed with magnetic side shields, or with a trailing or wrap around shield, which can be integral with the rest of the yoke and can be advantageously formed in the same, single electroplating step.
摘要:
A magnetoresistive sensor having a self biased free layer. The free layer is constructed upon an underlayer that has been treated by a surface texturing process that configures the underlayer with an anisotropic roughness that induces a magnetic anisotropy in the free layer. The treated layer underlying the free layer can be a spacer layer sandwiched between the free layer and pinned layer or can be a separate underlayer formed opposite the spacer layer. Alternatively, the texturing of an underlayer can be used to induce a magnetic anisotropy in a bias layer that is separated from the free layer by an orthogonal coupling layer. This self biasing of the free layer induced by texturing can also be used in conjunction with biasing from a hard-bias structure.
摘要:
UV molding from elastomeric masters on thin bendable backplanes that allow replication of UV-cured resist patterns with high accuracy is disclosed. This design accommodates large substrate topographies, has improved de-molding properties, and facilitates two-in-one lithography and assembly of the sliders on topographically structured elastomeric sticky pads. The combination of sticky pad assembly and two-in-one lithography allows an all-in-one harmony process based on UV-molding. These features cure prior art technical problems of the harmony process while significantly reducing cost.
摘要:
A rotary microactuator includes a stationary electrode formed on a substrate, a movable electrode in proximity to the stationary electrode, a flexure mechanically connecting the stationary electrode to the movable electrode, and a plurality of limiters anchored to the substrate. Each limiter has an in-plane limiter portion and an out-of-plane limiter portion. The in-plane limiter portion limits movement of the movable electrode to a predetermined in-plane distance in a direction parallel to a surface of the substrate. The out-of-plane limiter portion limits movement of the movement of the movable electrode to a predetermined out-of-plane distance.
摘要:
A method for forming a perpendicular magnetic recording head using an air-bearing surface damascene process and perpendicular magnetic recording head formed thereby is disclosed. The perpendicular head is formed by depositing a pseudo trailing shield layer over a pole layer and selectively etching the pseudo trailing shield layer to a depth equal to a desired trailing shield throat height. Then, a magnetic material is deposited in the resulting void.
摘要:
A method is presented for fabrication of a tape medium read head having a unitary formation of multiple elements for reading multi-track data from a magnetic tape. The method includes providing a continuous substrate layer, and forming a sensor material layer on the continuous substrate layer. Photoresist material is deposited on the sensor material layer, and is patterned to form masks which provide protected areas and exposed areas of the sensor material layer. Exposed areas of the sensor material layer are shaped to form sensors from the protected areas of the sensor material layer. Electrical lead materials are deposited between and adjacent to the sensors, and the masks are removed.
摘要:
During fabrication of a perpendicular write head in a wafer, at least two sides of a write pole are defined (e.g. by ion milling) while a third side of the write pole is protected by a masking material. At this stage, a material that is to be located in the write gap is already present between the write pole and the masking material. After definition of the write pole surfaces, a layer of dielectric material is deposited. During this deposition, the masking material is still present. Thereafter, the masking material (and any dielectric material thereon) is removed, to form a hole in the dielectric material. Next, a trailing shield is formed in the structure, so that at least one portion of the trailing shield is located in the hole, and another portion of the trailing shield is located over the dielectric material, in an area adjacent to the hole. Note that the gap material is now sandwiched between the portion of the trailing shield in the hole, and the write pole.
摘要:
A first read gap layer has a resistance RG1 between a first shield layer and one of the first and second lead layers of a read head and the second read gap layer has a resistance RG2 between a second shield layer and said one of the first and second lead layers of the read head. A connection is provided via a plurality of resistors between a first node and each of the first and second shield layers wherein the plurality of resistors includes at least first and second resistors RS1 and RS2 and the first node is connected to said one of the first and second lead layers. A second node is located between the first and second resistors RS1 and RS2. An operational amplifier has first and second inputs connected to the first and second nodes respectively so as to be across the first resistor RS1 and has an output connected to the first node for maintaining the first and second nodes at a common voltage potential. In a first embodiment the first and second shield layers are shorted together. A test instrument is then employed for determining the combined parallel resistance of the resistors RS1 and RS2 by having a first side of the test instrument connected to the first node and the second side connected to each of the first and second shield layers. In the second embodiment a third resistor RS3 is connected between the second node and one of the shield layers, such as the second shield layer. The test instrument can determine the resistances of the first and second gap layers separately by being connected between the first node and the first shield layer for the resistance of the first gap layer or between the first node and the second shield layer for the resistance of the second gap layer.