摘要:
A toner composition for fixing onto a receiver in conjunction with non-contact fuser capable of fusing one or more layers of toner on the receiver such that one or more toner layers reach a fusing temperature above a glass transition temperature. One or more cooling finish rollers are located downstream from the non-contact fuser to lower the toner temperature.
摘要:
An apparatus for fixing of toner onto a receiver, including: a non-contact fuser capable of fusing one or more layers of toner on a receiver such that one or more toner layers reach a fusing temperature above a glass transition temperature. The apparatus also includes one or more cooling finish rollers located downstream from the non-contact fuser to lower the toner temperature.
摘要:
An apparatus for fixing of toner onto a receiver, including: a non-contact fuser capable of fusing one or more layers of toner on a receiver such that one or more toner layers reach a fusing temperature above a glass transition temperature. The apparatus also includes one or more cooling finish rollers located downstream from the non-contact fuser to lower the toner temperature.
摘要:
The present invention provides a method of resurfacing a pressure member in a printer having a fuser member that is externally heated by a heater roller. The method includes providing a pressure member having an outer surface of a high temperature fluorothermoplastic. When it is determined that the outer surface is in need of resurfacing, the fuser member is removed from the printer, and the pressure member is mounted in the place of the fuser member. The pressure member is rotated at a speed of at least 1 rpm while engaging the outer surface of the fuser member with the heating roller normally used to heat the fuser member at a pressure of at least 5 psi at a temperature of at least 10° C. below the fluorothermoplastic melting temperature for a time sufficient to resurface of the outer surface of the pressure member.
摘要:
Internally-heated external rollers transfer heat rapidly to a fuser roller in an electrostatographic printer. Stored media process set points, input image content and input media type data are used to regulate the heat transfer rate by varying the nip width between the heated external rollers and the fuser roller. The rate of heat transfer and the rate of heat transfer adjustment are sufficiently rapid that many different media weights and types may be mixed in a print run without restrictions on media run lengths, without collation requirements per run, and without productivity losses due to slowing of feed rate for heavier receivers.
摘要:
Internally-heated external rollers transfer heat rapidly to a fuser roller in an electrostatographic printer. Stored media process set points, input image content and input media type data are used to regulate the heat transfer rate by varying the nip width between the heated external rollers and the fuser roller. The rate of heat transfer and the rate of heat transfer adjustment are sufficiently rapid that many different media weights and types may be mixed in a print run without restrictions on media run lengths, without collation requirements per run, and without productivity losses due to slowing of feed rate for heavier receivers.
摘要:
The present invention provides a method of resurfacing a fuser member in-situ. The method includes providing a fuser member having an outer surface of a high temperature fluorothermoplastic. When it is determined that the outer surface is in need of resurfacing, the fuser member is rotated at a speed of at least 1 rpm while engaging the outer surface of the fuser member with at least one heating roller at a pressure of at least 5 psi at a temperature of at least 10° C. below the fluorothermoplastic melting temperature for a time sufficient to resurface of the outer surface of the fuser member.
摘要:
A method and an apparatus of fixing a heat curable toner to a carrier substrate are shown. In the method, a toner applied to a first surface of the carrier substrate is heated above the glass transition temperature of the toner by microwave radiation, using at least one microwave applicator as a first heat source, to thereby initiate thermal cross-linking of polymer chains of said toner. The temperature is kept above the glass transition temperature of the toner for a predetermined time of at least one second, by applying heat to the toner by means of at least one non-contact second heat source, to thereby allow the thermal cross-linking to proceed further and to thereby raise the glass transition temperature of the toner. The apparatus has at least one microwave applicator forming a first heat source, at least one second heat source for heating the toner and/or the carrier substrate, at least one transport mechanism for contacting the carrier substrate on a second side thereof and for transporting the carrier substrate in sequence along the first and second heat sources and at least one controller for controlling the first heat source, the second heat source and/or the transport mechanism such that toner on a first side of the carrier substrate is heated above its glass transition temperature and kept at a temperature above the glass transition temperature for at least one second.
摘要:
A printing system includes one or more printing system components positioned opposite a moving print media. A wick assembly can be attached to a printing system component to wick condensation away from a surface of the printing system component that is opposite the moving print media. A heating element can be in contact with one or both of the wick assembly and a printing system component. A protective layer can be attached to the surface of a printing system component that is opposite the moving print media to prevent condensation from forming on the component. A vacuum assembly can be positioned opposite the moving print media to produce suction over the print media that pushes humid air or some condensation into the vacuum assembly.
摘要:
Apparatus for heating toner on a receiver having an ignition energy, having an energy source for providing input energy; and a membrane disposed adjacent to the receiver. The membrane receives the input energy from the energy source; stores a portion of the input energy; and radiates emitted energy that is absorbed by the toner, the receiver, or a combination thereof, wherein the absorption causes the temperature of the toner to rise above a desired temperature. The stored portion of the input energy is less than the ignition energy.