摘要:
A spectral capture parameter is adjusted for capturing successive frames of motion image data. Spectral content in a first region of a current frame is compared to spectral content in a counterpart region in a previous frame. It is determined whether the spectral content has changed by more than a threshold value, based on the comparison. Responsive to a determination that the spectral content has changed by more than the threshold value, the spectral capture parameter for the first region is adjusted, and the adjusted spectral capture parameter is applied to an imaging system for capture of a successive frame.
摘要:
A spectral capture parameter is adjusted for capturing successive frames of motion image data. Spectral content in a first region of a current frame is compared to spectral content in a counterpart region in a previous frame. It is determined whether the spectral content has changed by more than a threshold value, based on the comparison. Responsive to a determination that the spectral content has changed by more than the threshold value, the spectral capture parameter for the first region is adjusted, and the adjusted spectral capture parameter is applied to an imaging system for capture of a successive frame.
摘要:
A method for adaptive spectral image capture that may be performed via an image capture device is disclosed. A default capture parameter is applied to an imaging assembly and a sample image of a scene is captured by an image capture device. The sample image is analyzed to identify transition zones between multiple different regions. An initial guess as to which spectral regions a filter mode might work best is obtained based on dominant transition region spectrum and a first iterated step in which numerical values for the filter mode are calculated. A second iterated step in which each such filter mode is evaluated for effectiveness against other filter modes. The regions in which a specific filter mode works best becomes associated with the filer mode and these regions become the guess for the next iteration.
摘要:
Systems and methods for evaluating images segment a computational image into sub-images based on spectral information in the computational image, generate respective morphological signatures for the sub-images, generate respective spectral signatures for the sub-images, and generate a resulting image signature based on the morphological signatures and the spectral signatures.
摘要:
A method for adaptive spectral image capture that may be performed via an image capture device is disclosed. A default capture parameter is applied to an imaging assembly and a sample image of a scene is captured by an image capture device. The sample image is analyzed to identify transition zones between multiple different regions. An initial guess as to which spectral regions a filter mode might work best is obtained based on dominant transition region spectrum and a first iterated step in which numerical values for the filter mode are calculated. A second iterated step in which each such filter mode is evaluated for effectiveness against other filter modes. The regions in which a specific filter mode works best becomes associated with the filer mode and these regions become the guess for the next iteration.
摘要:
Systems and methods for evaluating images segment a computational image into sub-images based on spectral information in the computational image, generate respective morphological signatures for the sub-images, generate respective spectral signatures for the sub-images, and generate a resulting image signature based on the morphological signatures and the spectral signatures.
摘要:
An image capture apparatus includes a variable translucency mirror, a viewfinder unit configured to receive light reflected by the variable translucency mirror, an imaging sensor configured to receive light transmitted through the variable translucency mirror, an image display unit configured to display an image based on the light received by the imaging sensor, and a controller configured to set a translucency of the variable translucency mirror. In a viewfinder mode, the controller sets the variable translucency mirror to be at least partially reflective such that light incident on the variable translucency mirror is reflected thereby and received by the viewfinder unit. In a display view mode, the controller sets the variable translucency mirror to be at least partially transparent, such that light incident on the variable translucency mirror is transmitted therethrough and received by the imaging sensor.
摘要:
A device for sensing light comprises a light sensor, one or more intermediate mirrors, a micromirror array including a plurality of independently positionable micromirrors, wherein a first micromirror in the micromirror array is positionable in a first position such that light reflected by the first micromirror while in the first position is reflected toward a first region on one of the one or more intermediate mirrors, wherein the light reflected toward the first region on one of the one or more intermediate mirrors is further reflected to the light sensor, and a lens configured to direct light toward the micromirror array.
摘要:
An image capture apparatus includes a variable translucency mirror, a viewfinder unit configured to receive light reflected by the variable translucency mirror, an imaging sensor configured to receive light transmitted through the variable translucency mirror, an image display unit configured to display an image based on the light received by the imaging sensor, and a controller configured to set a translucency of the variable translucency mirror. In a viewfinder mode, the controller sets the variable translucency mirror to be at least partially reflective such that light incident on the variable translucency mirror is reflected thereby and received by the viewfinder unit. In a display view mode, the controller sets the variable translucency mirror to be at least partially transparent, such that light incident on the variable translucency mirror is transmitted therethrough and received by the imaging sensor.